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Abstract  

Monitoring of poultry welfare-related bio-processes and bio-responses is vital in welfare 

assessment and management of welfare-related factors. With the current development in 

information technologies, computer vision has become a promising tool in the real-time 

automation of poultry monitoring systems due to its non-intrusive and non-invasive 

properties, and its ability to present a wide range of information. Hence, it can be applied to 

monitor several bio-processes and bio-responses. This review summarizes the current 

advances in poultry monitoring techniques based on computer vision systems, i.e., 

conventional machine learning-based and deep learning-based systems. A detailed 

presentation on the machine learning-based system was presented, i.e., pre-processing, 

segmentation, feature extraction, feature selection, and dimension reduction, and modeling. 

Similarly, deep learning approaches in poultry monitoring were also presented. Lastly, the 

challenges and possible solutions presented by researches in poultry monitoring, such as 

variable illumination conditions, occlusion problems, and lack of augmented and labeled 

poultry datasets, were discussed.   

Keywords: Computer vision, Deep learning, Machine learning, Monitoring, Poultry, Welfare 
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1. Introduction  

Food security concerns have mandated an increase in agricultural production due to the ever-

growing world population with a projection of over 9.6 billion people by the year 2050 

(Gerland et al., 2014). However, environmental production constraints have resulted in a 

decline in the global per-capita cereal production since the early 1980s (Dyson, 1999). 

Additionally, there is an increasing preference for animal-based food proteins (FAO, 2018). 

Therefore, future global meat consumption is deemed to increase by 70% by 2050 

(Berckmans, 2017). This increasing demand has resulted in intensive and extensive animal 

production. Currently, over 3535 million animals are reared globally under extensive and 

intensive production systems, with a total annual production of 798 and 3029 million tons of 

milk and meat, respectively (Pulido et al., 2018; J. Wang et al., 2019). A report by Henchion 

et al. (2014) on the trends of meat consumption indicated an increase in consumption of 

poultry meat and poultry meat products, with a projected increase within the next decade due 

to preferences of white meat with chicken being the favorite (OECD-FAO, 2017; Okinda et 

al., 2019). With the intensification of chicken production and the growing awareness of 

acceptable animal welfare conditions, animal health, efficiency, and sustainable 

environmental conditions have become challenging factors to fulfill (Berckmans, 2014). 

Hence, human surveillance has ceased to be a viable solution in livestock monitoring (Okinda 

et al., 2019). Precision Livestock Farming (PLF) has been used as a solution to these 

challenges by providing efficient automated systems while at the same time maintaining 

animal welfare (Lehr, 2014). PLF acts as a support system to the stockmen to monitor various 

bio-processes and bio-responses related to animal welfare, health, and productivity (Banhazi 

et al., 2012; Berckmans, 2017; Wathes et al., 2008).  

Vision-based PLF systems have become a rich research topic due to the current development 

in technology and the advantages of computer vision systems in animal monitoring. 
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Computer vision systems can provide non-intrusive, non-invasive, consistent, effective, and 

objective supervision. It provides an allowance for data recording for future usage and 

analysis. Additionally, computer vision reduces tedious and labor-intensive processes. 

Furthermore, it provides a robust sensing technology that can be used to monitor numerous 

aspects of the farm. Computer vision is the process of applying mathematics, computer 

science, and software programming to provide image-based automated process control. There 

are two categories of computer vision-based systems, i.e., machine learning-based systems 

and deep learning-based systems. The former follows a typical image processing procedure 

(image acquisition, pre-processing, region of interest (ROI) extraction, feature extraction, and 

classification or regression). While the later perform classification or regression from an 

object recognition point of view based on Deep Neural Networks (DNN). General object 

recognition tasks in computer vision include image identification, object detection, image 

classification, semantic segmentation, and specific object recognition (Fujiyoshi et al., 2019).  

The image identification problem involves verifying if an object in an image has the same 

pattern as a reference object. The verification is based on the difference (threshold distance) 

between the feature vectors of the reference pattern and the input image. Object detection 

problem involves finding the location of an object of a specific category in an image. It can 

be a single category or a multi-class object detection problem. In deep learning (DL), multi-

class object detection can be performed by a single network as opposed to a conventional 

machine learning approach. The image classification problem involves finding the category(s) 

in which an object(s) in an image belongs. The semantic segmentation problem involves 

understanding the scene structure of an image, i.e., finding pixel-wise object categories. This 

problem is challenging using classical machine learning techniques but can be overcome by 

the application of DL algorithms. Specific object recognition is a subtask of the general 

object detection problem. It involves the detection of specifically defined objects in an image 
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by detecting feature points using scale-invariant feature transform (SIFT) (Lowe, 2004) or 

learned invariant feature transform (LIFT) (LeCun et al., 1999). An overview of computer 

vision applications in poultry monitoring is presented in Fig. 1. 

The main components of a computer vision system are the camera sensor, image processing 

board, software, and hardware. The camera sensor converts photons to electrical signals. In 

chicken monitoring systems, visual light-based (charge-coupled devices (CCD) and 

complementary metal-oxide-semiconductor (CMOS)), thermal and infrared (IR) depth-based 

sensors have been applied to acquire chicken images in different farm environments. The 

image processing board is also known as the digitizer, converts the visual image into 

numerical form (pixels). The software is the underlying image analysis code that performs 

image manipulations to achieve the desired output. Different processing algorithms have been 

developed and applied to the acquired images to perform the objective tasks based on a 

specific programming framework such as Matlab, ImageJ, and OpenCV, to mention a few. 

The hardware refers to all the connected components that make up the computer vision 

system, i.e., a camera sensor, connecting cables, computers, etc.  

Despite the numerous advantages of computer vision systems, the performance of any vision 

systems in the monitoring of animals is greatly affected by the variation of ambient light 

conditions in the farm environment, color contrast between background and foreground, and 

occlusion problems. Nevertheless, several studies have been carried out to overcome these 

challenges 

1.1. Precision Livestock Farming and animal welfare  

Animal welfare is a complex, dynamic, multifaceted policy issue with economic, scientific, 

ethical, and political dimensions that need to be addressed objectively in a scientifically 

credible manner. The term animal welfare has been defined by several studies in different 
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ways, depending on criteria and assessment. According to Bessei (2018), animal welfare 

ranges from a total perfect condition to extreme suffering. Characterized by diseases, physical 

damages (wounds and bone breakage), behavioral (displacement preening, stereotyped 

behavior, feather pecking and cannibalism, aggression, and fear), physiological (stress), 

ethological, psychological, and positive feeling (dustbathing, preening, stretching and play) 

criteria. According to Dawkins (2017), good animal welfare is defined by good health (water, 

food, and lack of injury) and the animal having its needs and wants to be fulfilled at all times. 

Additionally, 12 criteria have been introduced as standards of good poultry welfare 

conditions (Welfare-Quality®, 2009). These criteria include thermal comfort, absence of 

disease, absence of prolonged hunger, absence of injuries, absence of prolonged thirst, ease 

of movement, absence of pain due to management procedures, presence of comfort around 

resting, expression of other natural behavior, good human-animal relations, expression of 

social behavior, and positive emotional state. Generally, these welfare criteria can be 

summarized as “animal health and animal want” (Dawkins, 2017). 

Animal welfare is an emotive issue, but the question is, what is the importance of animal 

welfare? In a general sense, good animal welfare benefits the stockman, the animal in 

question, and the consumer of the animal products. Without animal welfare, there would be 

no high-quality meat, eggs, or milk. In poultry production, if the birds are stressed, abused, 

and mistreated, the egg production by the layers will decline (Alm et al., 2016). Similarly, if 

broilers and other animals kept for meat are poorly handled and poor slaughtering practice, 

the meat will be of poor quality or contaminated (Faucitano, 2018; Shimokomaki et al., 2017).  

The benefits of animal welfare can be presented in terms of improved animal health 

(Dawkins, 2017; Green et al., 2012; Salois and Baker, 2018), improved animal product 

quality (Dawkins, 2017; Llonch et al., 2015), reduced animal mortality rate (Dawkins, 2017; 

Salois and Baker, 2018), reduced risks of zoonotic diseases (Dawkins, 2017; Okinda et al., 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

7 
 

2019), improved disease resistance (Dawkins, 2017; Hoerr, 2010), and farmers satisfaction 

(Hemsworth et al., 2015; Hemsworth and Coleman, 2010). However, with a good animal 

welfare practice, the prices of animal products have been seen to rise, and some consumers 

aren’t willing to pay for high welfare practices (Healy, 2018; Heise and Theuvsen, 2018).  

However, there are several hindrances in animal welfare evaluation, such as; the difficulty in 

measuring physiological and ethological responses in real-farm animal husbandry conditions 

(Alm et al., 2016; Bessei, 2018), the difficulty in distinguishing between normal, abnormal, 

and disturbed behaviors (Bessei, 2018). Furthermore, from the studies of Hughes et al. (2018) 

based on human and animal neural responses, under constant conditions, then the welfare 

situation won’t be considered as well-being even in good conditions and management if the 

psychological balance isn’t offset. Finally, animals are complex individual and time-variant 

(CIT) systems that are individually different and respond differently at different moments. 

Thus, they can’t be analyzed as a typical classical steady-state system (Berckmans, 2006). 

Moreover, welfare condition indicators can be contradicting, and according to Alm et al. 

(2016), presently, there is no consensus on the ideal technique to access animal welfare. PLF 

itself hasn’t lived up to its expectation. Lehr (2014) presented the main obstacles to the 

implementation of PLF as, lack of consistent marketing, lack of direct cooperation between 

farmers, biologists, engineers, and economists, little focus on data interpretation and control, 

the technological gap between consumers and modern farming, and lack of awareness, animal 

complexities, lack of robustness of developed techniques and technologies, and the 

difficulties and reliability of PLF systems in commercial farms. Despite the mentioned 

hindrances on assessing animal welfare and adoption of PLF, studies have reported on several 

PLF techniques in the monitoring of various bio-responses and bio-processes aiming at 

improving efficiency, animal health, welfare, and farm economy in large-scale chicken 

production.  
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Fig. 1: An overview of the application of computer vision in poultry monitoring 

Several research efforts have been reported in literature on the development of computer 

vision systems for chicken monitoring of welfare-related issues such as weight, lameness, 

behaviors, temperature, activities, and health (Aydin, 2017a, 2017b; Mortensen et al., 2016; 

Okinda et al., 2019; J. Wang et al., 2019; Zhuang et al., 2018; Zhuang and Zhang, 2019). This 

review aims at providing a proper synthesis of literature to provide clear guidance on the 

state-of-the-art techniques and the potential future direction on the monitoring of welfare-

related bio-processes and bio-responses in chicken production. Therefore, this work will 

focus on up-to-date research advances to provide useful technical information for the 

development of more relevant and reliable computer vision techniques for the monitoring of 

welfare-related bio-processes in chicken production. 

2. Machine learning-based poultry monitoring systems 

As already mentioned, the machine learning-based system follows a typical image analysis 

procedure with the application of conventional machine learning algorithms, as shown in Fig. 

2.  
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Fig. 2: The general workflow of machine learning-based chicken monitoring systems 

2.1. Image pre-processing 

Image pre-processing operations are vital to obtaining a robust and efficient ROI 

segmentation performance. The pre-processing operations involve the following: resizing, 

color-space transformation, contrast enhancement, normalization, and denoising. RGB is the 

widely applied color space, but due to the high correlation between R, G, and B color spaces, 

it’s not suitable for object segmentation (Cheng et al., 2001). Hence, several transformation 

techniques have been explored by several studies aiming at achieving accurate image object 

segmentation. The commonly used color space models are RGB (red, green, and blue), LAB 

(L for brightness, A for values from red to green opponent colors along A-axis, and B for 

values from blue to yellow opponent colors along B-axis), HIS (hue, saturation, and intensity), 

HSV (hue, saturation, value),  YCrCb (Y for luminance component, Cb and Cr for blue-

difference and red-difference chroma components, respectively) just to mention a few 

(Ibraheem et al., 2012). All these color spaces are computed from RGB, as presented in Table 

1. 

As mentioned above, color transformation operation is always performed to obtain better ROI 

segmentation results.  Zhuang et al. (2018) applied the HSV and LAB (CIE L
*
a

*
b

*
) color 

spaces to extract poultry image color features during background removal. The HSV color 

space is robust to variation in illumination and more aligned to human color perception 
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(Hamuda et al., 2017), while the LAB  color space is invariant to sensor sensitivity (Ireri et al., 

2019). Based on the presentation by Zhuang et al. (2018), the S and V color spaces are not 

conducive for chicken segmentation because the resultant image intensities were widely 

distributed and divergent. However, H color space produced a clear visible broiler body 

segmentation, but the segmentation accuracy was somehow lower when compared to the a-b 

map. Therefore, Zhuang et al. (2018) applied the a-b map to describe the color space while l-

a as an auxiliary description in broiler body segmentation. To intensify the contrast of 

colored images, Pereira et al. (2013) applied the HIS color space to contrast the background 

from the foreground. In HIS space, H represents the specific color, S represents how saturated 

a color is in comparison to white, and I represent the brightness of the color. Additionally, 

Guo et al. (2020) compared the visualization effect of L
*
a

*
b

* 
and RGB (RG, RB, and GB) and 

established that the GB space had higher classification and visualization efficiency. Most 

studies in chicken monitoring using  visible light-based sensors are performed in RBG color 

space because of the numerous advantages of RGB color model i.e., its suitable for color 

display, easy to use and it’s an intuitive model for color creation and manipulation (Chavolla 

et al., 2018). 

Table 1 here 

The image resizing operation is performed to minimize the computation cost and 

complexities by reducing image resolution size. Image cropping can also be implemented as 

an image resizing operation and ROI extraction as performed by Mehdizadeh et al. (2015) in 

the extraction of the chicken head in beak and head motion analysis. Color images captured 

under varying or insufficient illumination have poor contrast and noise, which affects the 

performance of the subsequent image processing techniques. Contrast improvements can be 

performed during the image acquisition phase or as a pre-processing operation. A contrasting 

background (dark floor for white birds) can be manually installed to obtain a clear outline of 
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the birds (Amraei et al., 2018, 2017b, 2017a; Mollah et al., 2010; Pereira et al., 2013). The 

pre-processing contrast improvement technique is by grayscale pixel intensity enhancement 

by changing the grey-level between the range of 0 to 255. Additionally, global histogram 

equalization has been used to enhance contrast and alleviate light variations by normalization 

of image histograms. Pereira et al. (2013) applied R, G, B, S, and I space pixels normalization 

before a deduction of the inverse of r and b mathematical operations on pixel matrices. 

However, in the tracking of birds, normalization operation is always performed to eliminate 

errors, i.e., noise occurring due to the difference in sizes of birds (Aydin et al., 2010). 

Generally, normalization is performed to scale the data to a reasonable extent and to turn the 

images into normalized non-dimensional data (A. Wang et al., 2019). 

2.2. Region of interest segmentation  

Image object segmentation can be referred to as a process of forming connected objects with 

relatively homogenous properties by grouping related pixels together or partitioning an image 

into multiple segments with similar attributes (objects) (Ladický et al., 2009; A. Wang et al., 

2019). The main aim of the segmentation process is to transform an image to be more 

meaningful and easier to analyze and interpret (Pal and Pal, 1993). The meaningful segments, 

also known as ROI, is the initial step in transforming a color or a grayscale image from a 

low-level image processing task to a high-level image description task. Therefore, it is one of 

the most critical tasks in object detection by image processing. The success of image 

processing and analysis depends on the efficiency and reliability of the segmentation process. 

However, the accurate partitioning of an image is quite challenging and a lot of studies have 

been performed to achieve efficient and robust ROI extraction.  
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2.2.1. Features for segmentation and approaches 

Efficient discriminating features are fundamental in separating the background from the birds. 

For visual light-based sensors under constant light conditions, color is the most invariant 

feature against object translation, rotation, and partial occlusion (A. Wang et al., 2019). 

Zaninelli et al. (2018) applied this approach in the processing of thermographic images to 

perform background color thresholds. However, for the IR depth-based sensors, since the 

pixel intensities are distance (depth) values, distance threshold is often performed to remove 

the background (Jana, 2012; Okinda et al., 2019). Additionally, the sensor being invariant to 

variation in ambient light conditions, the depth information can be applied to assist in the 

segmentation process in 2D systems (Okinda et al., 2019). Generally, depth images have a 

less odious task of background removal compared to color images. This can be observed in 

the study by Mortensen et al. (2016), where multiple broilers could be detected in a depth 

image, based on a height function defined over a depth image based on the watershed 

segmentation method. Similarly, in the study by Okinda et al. (2019), the background was 

removed by a simple depth threshold and image subtraction. 

The main segmentation approaches can be grouped into three techniques: background 

subtraction, foreground detection, and learning-based techniques. The first two techniques are 

a two-stage process involving foreground detection and region validation, while the latter is a 

model development technique. Threshold-based and background subtraction techniques are 

the most widely used technique for foreground detection in chicken monitoring systems 

(Amraei et al., 2018, 2017a, 2017b; Aydin, 2017b; Aydin et al., 2015, 2013; De Wet et al., 

2003; Leroy et al., 2006; Mollah et al., 2010; Sergeant et al., 1998; Zaninelli et al., 2018). 

Table 2 presents an overview of the segmentation techniques applied in chicken monitoring 

systems.  
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In the image background subtraction technique, the conventional approach is to obtain a 

background image depicting a scene without objects of interest, and then to perform a frame-

by-frame subtraction under the condition that the camera is static. The pixels for which the 

difference is above a set threshold are labeled as belonging to the ROI (animal). The 

background image can be manually captured or via an automatically updating video frames, 

i.e., continuous frame averaging, loopy belief propagation, Gaussian mixture models, and 

frame copy outside foreground neighborhoods (B. Li et al., 2019). However, Sergeant et al. 

(1998) explained the shortcomings of the application of background subtraction in chicken 

tracking as; high density of birds in a pen may exceed the 1:1 ratio of moving objects to 

background. If the background image is obtained by automatically updating continuous 

frames, only moving birds can be identified. Thus, stationary birds will be detected as the 

background. Additionally, poor contract between background and foreground is a hinderance 

to background subtraction. 

Table 2 here 

The adaptive threshold technique based on Otsu (1979) is the most classical technique based 

on global intensity histograms (equalized) of an image to determine the threshold value. 

Otsu’s method establishes a threshold that maximizes the variance of the pixel intensities 

between classes. To improve the threshold-based segmentation efficiency, background 

subtraction is often performed before threshold segmentation (B. Li et al., 2019).   

The model-based segmentation approach through computational expensive, but with proper 

training, can produce excellent segmentation results. The template matching technique finds 

similar objects based on a visual template and image properties. Ellipse modeling and Active 

Shape Model (ASM) segmentation approaches are popular template matching techniques in 

object segmentation in animal studies (Leroy et al., 2006, 2005; B. Li et al., 2019; Zhuang et 
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al., 2018). An object's shape outline is tracked by fitting an ellipse in the ellipse modeling or 

Point Distribution Model (PMD) in ASM modeling. Zhuang et al. (2018) applied a bird’s 

color features based on a template image by ellipse modeling and color features. DL 

approaches have also been made as a segmentation technique, where a model is trained to 

detect particular objects in an image. Convolution neural network (CNN) based detector and 

a correlation filter-based tracker has also been applied in pig detection (Zhang et al., 2019). In 

poultry tracking, Fang et al. (2020) applied a deep regression network to detect and track 

birds in a pen.  Similarly, Zhuang and Zhang (2019) used a CNN model to detect and predict 

sick birds. More details on DL techniques are presented in Section 3. 

2.2.2. Region of interest validation 

Not all the extracted regions after foreground detections are often the ROI (may contain noise 

and misclassified pixels). A region validation is usually applied to improve quality by 

removing regions that aren’t consistent with the features of the ROI. These are often artifacts 

present in the background, such as droppings and shadows due to feathers and the head 

within the foreground (Amraei et al., 2017a, 2017b; Mollah et al., 2010).  The most 

straightforward techniques for region validation are morphology operations and ellipse fitting 

(consistent with area and size constraints specified for the chickens).  

Morphological operations based on erosion and dilation are the basic candidate validation 

processes performed to avoid discontinuities and isolated areas. Erosion and dilation 

functions remove and add pixels on an object boundary in an image, respectively. Erosion 

operation smoothens the contour of an object by eliminating both narrow isthmuses and thin 

protrusions while dilation operation performs hole filling inside an object contour. The sizes 

and shapes of the structural elements used in these morphological operations determine the 

number of pixels removed or added to the objects in an image (González et al., 2004). 

Additionally, these morphological operations assist in the removal of unnecessary noises 
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from the image (image smoothening). However, noise removal and smoothening can be 

performed by filtering methods such as Gaussian, homomorphic, blur, adaptive median, and 

anisotropic diffusion filters (Nakarmi et al., 2014; Tania and Rowaida, 2016). Furthermore, 

image filtering can be performed as a precaution against over-segmentation in intensity based 

images (depth images) (Mortensen et al., 2016). In weight estimation, the head and the tail 

regions are often removed for an accurate estimation of weight by image shape features. In 

intensity-based images, Mortensen et al. (2016) applied morphological opening to eliminate 

local minima due to the head while preserving local minima associated with the body. 

However, Amraei et al. (2017a), Amraei et al. (2017b), and Amraei et al. (2018) applied the 

Chen-Vese model to remove the chicken’s head. 

Another candidate validation technique involves the incorporation of prior knowledge about 

the object’s shape to achieve an accurate segmentation from noisy pre-processed data. Leroy 

et al. (2006) applied the ASM to model a 2D chicken shape and its deformations. However, 

the same study concluded that the main part of the chicken’s body could be well 

approximated using a simple ellipse shape as Point Distribution Models (PDM), which was 

initially utilized in the previous study of Leroy et al. (2005).  

2.3. Feature extraction  

Features are visual characteristics that can be used to correlate to a specific bio-response or 

bio-process under investigation. These visual characteristics are extracted from the ROI. 

However, these features differ from the segmentation features that are used to extract the 

chicken from the background. In machine vision systems, these features have to be extracted 

manually from all images as opposed to DL techniques. Generally, in chicken monitoring 

systems, these features can be divided into three broad categories, i.e., morphological features, 

locomotor features, and optical flow measures (Aydin, 2017b; Dawkins et al., 2012; 

Mortensen et al., 2016; Okinda et al., 2019).  
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2.3.1. Morphological features  

Morphological features describe the shape and size of an object and have been frequently 

applied in the description of several agricultural products. The shape features have been 

applied in sick broiler detection by posture analysis  (Okinda et al., 2019; Zhuang et al., 

2018). As changes in posture, such as depressed-bird-look-posture, indicates disease 

occurrences. Size has long been an observed feature, even on human health and growth. 

Animal size can be used to detect the occurrence of several vitalities such as diseases, on feed 

conversion ratio, growth, and market readiness (Okinda et al., 2018a; Wongsriworaphon et al., 

2015). In object analysis, morphological properties are defined by the shape and structure of 

the object or parts of the object. Shape-based object analysis techniques are often preferred 

because of their stability against sensor noise since they are invariant to light and color 

variations (Kurnianggoro and Jo, 2018).  

Shape representation and description techniques can be divided into two broad groups, i.e., 

contour-based and region-based methods. These classifications are categorized based on 

whether features are derived from the whole shape or the contour region. Each section is 

further subdivided into structural and global, depending on whether the shape is represented 

as primitives or as a whole (Zhang and Lu, 2004). The commonly applied shape 

morphological properties are the shape geometric features, also known as shape simple 

descriptors (Okinda et al., 2019). Shape geometric features can be simple shape 

measurements or shape indices. Shape measurements are the properties of the ROI, such as 

area, perimeter, major and minor axis lengths, centroid, etc. Shape indices are a combination 

of shape measurements such as circularity, eccentricity, average bending energy, convexity, 

etc. as illustrated in Table 3. Shape indices have the advantage of being invariant to rotation, 

translation, and scale because they are dimensionless values (Zhang and Lu, 2004). 

Table 3 here 
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Shape geometric features can be categorized as 2D and 3D features depending on the 

dimensionality of the image to be analyzed. Several shape geometric features have been 

successfully applied in chicken monitoring systems, as presented in Table 4 (Note that the 2D 

geometric features can be projected to 3D). Besides the mentioned geometric shape features 

and indices, Okinda et al. (2019) proposed the use of shape complexity measure, which is a 

function of entropy of the shape’s medial axis transform (region-based shape descriptor) 

(Okinda et al., 2018b; Panagiotakis and Argyros, 2016). The complexity feature was 

dependent on the shape structure (number of skeletons). The more the shape structures, the 

higher the shape complexity; hence, this feature successfully described a chicken posture 

shape. Additionally, Pereira et al. (2013) introduced the shape coefficients features, which 

were indices computed from the area, perimeter, and radial distance (minimum and maximum 

radial distances).  

Table 4 here 

2.3.2. Locomotor features  

Locomotor features are one of the most important characteristics used to identify poultry gait 

score (GS) and have been widely applied in the monitoring of birds regarding lameness, 

activeness, and health. Generally, monitoring poultry mobility helps to detect the occurrence 

of an infection and infestation, and provides a basis to evaluate if the management procedures 

and environmental conditions are conducive (Aydin, 2017b, 2017a; Okinda et al., 2019). 

Based on the idea by Winter (1985), the movement of a subject is an effort rather than the 

cause of the underlying problem. Hence, the locomotor features can be subdivided into two 

categories, i.e., kinematic and kinetic features. 

Kinetic analysis was introduced as a technique to analyze the pain levels by the pressure a 

bird exerts on a particular foot. Kinetic features are calculated by analyzing the walking 
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forces on the toes of a chicken such as forces on the middle, medial, back, and lateral toes 

and metatarsal pad as a chicken walk on a pedobarographic surface or a piezoelectric crystal 

sensor (Corr et al., 2007, 1998). Therefore, they are never applied in computer vision systems. 

Additionally, as Caplen et al. (2012) explained, few steps were analyzed in the kinetic 

analysis due to bird pausing or sitting on the surface; hence, high levels of data redundancy.  

Kinematic features are calculated by analyzing the walking motion and speed of a bird by 

computing its body displacement using reference body positioned (markers are usually used) 

on the hook, knee, and metatarsus.  The relative displacement of these reference markers can 

be tracked in both 2D space and 3D space. 3D space required a calibrated stereo camera to 

compute the 3D kinematic data, as performed by Caplen et al. (2012) and Caplen et al. (2013). 

However, these are considered intrusive kinematic features (markers in contact with the bird), 

which would be infeasible in a real fam environment and considering poultry welfare 

criterion. The non-contact kinematic moments of a bird include the walking velocity, 

acceleration, displacement, walk speed, body oscillations, and movement frequency (Aydin, 

2017b; Dawkins et al., 2013; Nääs et al., 2018). In the analysis of feeding behavior, 

kinematic variables from mandibulations can be analyzed for an effective feeder design and 

feeding behavior analysis (Mehdizadeh et al., 2015). Table 5 lists the mobility features that 

have been applied in chicken monitoring systems. 

Table 5 here 

2.3.3. Optical flow measures  

Optical flow can be defined as the pattern of visible motion of the objects in the visual scene, 

or the distribution of the apparent velocity of motion of the brightness pattern in the image 

(Horn and Schunck, 1981). Therefore, optical flow analysis has been widely applied to detect 

motion in several studies based on “no flow” and “flow” analysis between consecutive 
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frames. Optical flow can be categorized as sparse (flow vectors of few pixels) and dense 

(flow vectors of all pixels) optical flow. However, dense optical flow is computationally 

expensive. Therefore, in most studies, image frames are often divided into pixel blocks 

(Colles et al., 2016; Dawkins et al., 2017, 2012). Optical flow techniques can further be 

categorized as; differential techniques, energy-based methods, region-based matching, and 

phase-based techniques (Barron et al., 1994; Horn and Schunck, 1981). Differential 

techniques compute the flow velocity from spatiotemporal derivatives of image intensity 

(Lucas and Kanade, 1981). Region-based matching defines flow velocity as a change that 

provides the best match between image regions at different times. This technique was 

introduced due to the impracticability of Differential techniques due to noise and aliasing 

during image-acquisition and few numbers of frames (Anandan, 1989). Energy-based 

methods, also called frequency-based methods, apply velocity tuned filters. Finally, in phase-

based techniques, the flow velocity is defined in terms of the phase behavior of the output of 

a band-pass filter (Barron et al., 1994). 

Table 6 here 

The optical flow measures include spatial mean, skewness, variance, and kurtosis of the 

estimated flow velocities over the image. The description of these features is given in Table 6. 

These measures are obtained from each frame in a time series. The average of these features 

is computed over a period of time to give a summary of the object being monitored. In 

poultry monitoring, optical flow analysis has been applied in monitoring of behavior and 

lameness (Colles et al., 2016; Dawkins et al., 2013, 2012, 2009). 

2.3.4. Other features  

Apart from the features mentioned above, several other features have been developed and 

derived in poultry monitoring. The behavior sequence can be quantified to a fractal structure. 
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Therefore, a correlation can be developed between the fractal-like properties of behavior 

sequences and a bio-response or bio-process by determining the measures of complexity in 

those behavior sequences (Marıa et al., 2004; Rutherford et al., 2004). Marıa et al. (2004) 

developed a fractal-like binary behavior sequence for each chicken activity (observed). They 

performed a detrended fluctuation analysis to quantify the correlation properties of those 

fractals-like behavior sequences. This study established that the fractal complexity of the 

behavior sequence decreased with an increase in stress due to insufficient energy to perform 

complex behaviors. Pixel profile, moving pixels, or the proportion of pixel changes have also 

been used as features in chicken tracking. Sergeant et al. (1998) performed an analysis of the 

frequency of the pixels of the ROI to determine the number of bids within the image. 

Additionally, Fraess et al. (2016) analyzed the percentage pixel change using EthoVision XT 

10 (Noldus, Leesburg, VA, USA) to determine chicken activities from video frames. The 

difference in the intensity values between subsequent frames (at the same coordinates) can be 

computed to determine the activity index. Similarly, Aydin et al. (2013) and Aydin et al. 

(2010) applied this technique in their statistical analysis of chicken activity and GS. However, 

the latter applied the eYeNamic software to measure the bird’s activities. Moreover, Van 

Hertem et al. (2018) determined the flock activity index and distribution Index after image 

analysis by the eYeNamic software for GS prediction. In this sense, the activity index was a 

measure of the movement of the birds in the images, while the distribution Index was a 

measure of the occupied floor space in the house (Kashiha et al., 2013; Neves et al., 2015). A 

similar technique was applied by Youssef et al. (2015) and Kristensen et al. (2006) in 

developing a close loop chicken behavior control system based on dynamic activity index, 

ambient temperature, air velocity, and light intensity. 

Regarding kinematic features and lameness, Reiter and Bessei (1997) suggested that 

lameness can be detected by analyzing the differences in the vertical and lateral movements 
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of the left and right leg. Therefore, walking trajectory features has been used as dynamic 

features to assess lameness in broilers. Similarly, trajectory and rotation features of sequences 

of a bird's image can be used in behavior detection (Leroy et al., 2005). There are two scoring 

techniques in birds, i.e., GS (Kestin et al., 1992) and latency to lie down (LTL) (Berg and 

Sanotra, 2003; Weeks et al., 2002). However, GS is a subjective technique, while LTL is 

invasive as the bird has to come in contact with water. Therefore, to develop a non-invasive 

technique (Aydin, 2017a) applied depth feature from a 3D depth image to determine the LTL 

and number of lying events (NOL) to assess lameness using a 3D vision camera. 

2.4. Feature selection and dimension reduction 

Feature selection involves choosing a subset of relevant features after feature extraction 

engineering before model development. The extracted features may contain irrelevant and 

redundant variables that would influence the modeling task. A feature selection criterion is 

required to measure the significance of each feature and to remove extraneous features, by 

selecting a subset of variables from an input data that efficiently describes the input while 

reducing the effects of noise and other irrelevant variables but still capable of producing a 

generalized model (Chandrashekar and Sahin, 2014). Therefore, feature selection helps to 

provide an in-depth understanding of the dataset, reduces computational complexities, 

reduces the curse of dimensionality effects, and improves the general performance of the 

model.  From a data-type perspective, Li et al. (2017) categorized feature selection techniques 

as similarity-based, hybrid feature selection, information-theoretical-based, statistical-based, 

sparse-learning-based, reconstruction-based, and deep-learning-based methods.  In chicken 

monitoring systems, few features are always extracted; therefore, most studies don’t perform 

feature selection. However, Amraei et al. (2017a) and Amraei et al. (2018) performed feature 

selection based on a statistical-based method (correlation analysis) to select the best 

predictors in chicken weight estimation. 
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Dimension reduction isn’t the same as feature selection. The difference is that the resulting 

set of features after feature selection is always a subset of the original set of features before 

the feature selection process. However, the resulting set after dimensionality reduction 

techniques does not have to be a subset of the original set of features before the dimension 

reduction process (as in Principle Component Analysis (PCA)). Thus, feature selection 

applies a suboptimal procedure to remove redundant data with tractable computations. In 

summary, feature selection works on data attributes based on variance, while dimension 

reduction works on Eigenvalue and Eigenvector, making feature selection a special case of 

dimension reduction.  Considering that data becomes sparser in high-dimensional space (the 

curse of dimensionality), thus, affecting algorithms designed for low-dimensional space. 

Hence, dimension reduction transfers the original dataset from high dimensional space to a 

lower-dimensional space while preserving the essential features by finding the optimal 

approximation of the original dataset. Dimension reduction algorithms can be categorized 

according to their implementation process, i.e., Feature Selection, Kernel Method, Project 

Method, Manifold Learning, Dictionary Learning, Sparse Learning, and Artificial Neural 

Network (Huang et al., 2019). The eYeNamic software in the analysis of video frames in the 

study by Van Hertem et al. (2018) generated a large amount of data. Therefore, the PCA 

dimension reduction technique was applied while minimizing information loss.  

2.5. Statistical analysis 

Statistical analysis is often performed to determine the statistical relationship (inference) 

between the extracted features and the bio-process or bio-response being monitored. 

Generally, statistical inference is a comparison of detailed statistics between an observational 

dataset and an appropriate reference distribution to determine the significance of those 

statistics in terms of mean values, standard deviation, differences among the means, etc. 

Statistical inference is a powerful tool for drawing scientific conclusions that efficiently apply 
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existing data or those collected for the specific purpose of testing hypotheses, provided 

various assumptions are met, and specific hypotheses are specified. Statistical tests can be 

categorized into two groups, i.e., Parametric and Non-Parametric tests. The parametric 

statistical tests make assumptions on the parameters of the population distribution (data is 

assumed to be normally distributed). In contrast, non-parametric tests make no such 

assumptions (Okinda et al., 2019). For every parametric test, there is a shadow non- 

parametric test. The choice of a statistical test is determined by the underlying goal, as 

presented in Fig. 3. 

Statistical correlational analysis, i.e., Pearson correlation (parametric test), was applied by 

Dawkins et al. (2012) to determine the relationship between optical flow and bird mortality. 

The same approach was presented by Dawkins et al. (2013) in determining the relationship 

between optical flow, behavior, and welfare. One-way ANOVA was also employed by 

Caplen et al. (2012) and Caplen et al. (2013). The former analyzed kinematic features 

regarding chicken weight and lameness, while the latter analyzed kinematic features to 

determine the response of lame broilers to non-steroidal anti-inflammatory drugs. Non-

parametric tests such as the Friedman test, Dunn test, Spearman's Ranke Order correlation 

test, and Wilcoxon Signed-Rank Test have been successfully applied in chicken lameness 

(Aydin, 2017b, 2017a; Aydin et al., 2015, 2013, 2010), health (Okinda et al., 2019) and 

behavior (Kristensen et al., 2007) monitoring systems. A description of the applied statistical 

analysis in the monitoring of poultry is presented in Table 7. 
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Fig. 3: The flow chart for the selection of appropriate statistical tests adopted from Jaykaran (2010) 
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2.6. Modeling techniques 

The modeling step in poultry monitoring systems can be categorized as regression and 

classification tasks. Based on different modeling techniques, the tasks can be performed by 

conventional machine learning or DL techniques. Machine learning algorithms are 

computerized modeling approaches based on sample data (use statistics to find patterns in 

data) to make decisions or predictions without being reprogrammed time and again 

(Bhargava and Bansal, 2018; A. Wang et al., 2019). Machine learning algorithms are grouped 

into three categories; Supervised Learning, Unsupervised Learning, and Reinforcement 

Learning.  

Supervised Learning is a governed learning technique that incorporates the use of example 

inputs and their desired outputs, and the main objective is to learn the pattern (training) that 

maps the inputs into outputs (Alpaydin, 2020). Supervised Learning involves model training 

and model testing tasks. The model training process is an essential procedure performed 

using labeled data as the supervisory signal. Supervised learning algorithms learn a function 

that can map new inputs into outputs (prediction) by iterative optimization of an objective 

function. The model testing is the application of new or unknown data to the trained model 

and observing the accuracy of the predicted output. In chicken monitoring systems, the 

outputs are weight (regression), health condition (classification), or behavior (classification), 

among others. Linear, nonlinear, and logit regression, Support vector machine (SVM), 

Support vector regression (SVR), and artificial neural networks (ANN) are the mostly applied 

supervised machine learning algorithms that have been applied in poultry monitoring systems.  

Linear regression applies a statistical approach to model the relationship between one or more 

independent variables and a (one) dependent variable by fitting a linear equation. In linear 

modeling, the relationships are developed by a linear predictor function (Rencher and 

Christensen, 2012). However, for non-linear regression, the dependent variable is modeled as 
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a non-linear function of one or more independent variables. In this case, data is fitted by 

successive approximations methods. The two regression techniques have been widely applied 

in chicken weight estimation. De Wet et al. (2003) developed two linear models to estimate 

chicken weight based on image object surface area and perimeter. The same technique was 

applied by Mollah et al. (2010) but incorporated the age of the chicken. For comparative 

analysis with other regression algorithms, Mortensen et al. (2016) also applied linear 

regression based on 2D, 3D image features and age. The logit regression is applied when the 

dependent variable is a binary (dichotomous). It models the relationship between a dependent 

binary variable and one or more independent variables. Okinda et al. (2019) applied logit 

regression to classify broiler chicken as sick or healthy using broiler morphological and 

locomotor features.  

SVR is an extension of SVM to solve regression problems.  SVM can perform both linear 

(non-probabilistic binary linear classifier) and non-linear classification by applying kernel 

functions to implicitly map inputs into high-dimensional feature space (Cortes and Vapnik, 

1995). The kernel functions solve the quadratic programming problem of separating support 

vectors in the training data vectors by finding the appropriate hyperplane. The SVM kernels 

include linear, polynomial (quadratic and cubic), and radial basis function (RBF) kernels 

(Nyalala et al., 2019; Okinda et al., 2020). RBF kernel was applied by Amraei et al. (2017b) 

in chicken weight estimation, while Okinda et al. (2019) applied all the SVM kernels 

mentioned above in chicken health status classification.  

Biological neural networks inspired the ANN machine learning technique. The ANN 

simulates the way the human brain analyzes and processes information. Therefore, it’s a non-

linear statistical model. ANN consist of input, hidden, and output layer. The hidden layer 

transforms the input into output by solving an optimization problem by minimization of a loss 

function during optimization (Samarasinghe, 2016). The most basic types of ANN are the 
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feedforward neural network and recurrent neural network, which are trained by the 

Backpropagation algorithms. The number of neurons in the hidden layer is often adjusted 

during training to minimize network error. This can be observed in the study by Mortensen et 

al. (2016) in the selection of 3 and 10 neurons in the hidden layer. However, these regression 

models performed reasonably similarly.  The Bayesian ANN being a probabilistic model 

using an  ANN regression function was also applied by Mortensen et al. (2016) due to its 

approach to outlier detection. Furthermore, its performance was more superior to linear 

regression and other ANN models in broiler weight estimation. 

To evaluate the performance of different backpropagation training algorithms, i.e., Gradient 

descent, Bayesian Regularization, Scaled Conjugate Gradient, and Levenberg-Marquardt 

training algorithms, Amraei et al. (2017a) developed three ANN models for broiler weight 

estimation. Based on the training algorithms mentioned above, the Bayesian regulation 

training algorithm resulted in the best performing ANN model at an R
2
 of 0.983 and RMSE 

of 82.37 g on the testing data set. The performance of logit, SVM, and ANN classifiers were 

evaluated and compared by Okinda et al. (2019) in broiler health classification. The RBF 

SVM outperformed all the other models at an accuracy of 0.978. Similarly, Zhuang et al. 

(2018) reported the superiority of SVM at about 99.5% accuracy in sick birds detection. In 

determining the chicken distribution, Guo et al. (2020) applied a backpropagation neural 

network and a normalized chicken image surface area. Other supervised Learning that has 

been applied in chicken monitoring is the decision tree learning, which was implemented by 

Pereira et al. (2013) in the classification of broiler breeder behaviors whereby the extracted 

geometric features were the branches, while the leaves represented the behavior labels. 

Unsupervised Learning and Reinforcement Learning haven’t been applied to poultry 

monitoring systems (modeling techniques). However, this review will present a brief 

highlight of the two learning techniques. Unsupervised Learning has no training labels for 
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training samples, unlike supervised Learning. Unsupervised learning algorithms find suitable 

structures and patterns in unlabeled data by modeling of probability densities over inputs 

(Hastie et al., 2009). The two main techniques used in Unsupervised Learning are cluster 

analysis and principal component (Duda et al., 2001).  Nevertheless, Zhuang et al. (2018) 

applied K-means clustering as an ROI segmentation technique of birds in a farm environment. 

The reinforcement algorithm learns via a feedback loop and focuses on finding a balance 

between exploration and exploitation (Kaelbling et al., 1996). It works on the Markov 

decision process (MDP) environment. Therefore, basic reinforcement learning is modeled as 

a Markov decision process. A detailed mathematical description of these machine learning 

algorithms will not be presented in this study. Please refer to the corresponding publications 

for more insight. 

Table 7 here 

3. Deep learning-based poultry monitoring systems 

As already mentioned, the conventional machine learning-based poultry monitoring follows 

the procedure image acquisition, pre-processing, segmentation (ROI extraction), feature 

extraction, and classification or regression, as presented in Section 2. However, segmentation, 

feature extraction, and selection engineering are arduous tasks. Furthermore, the performance 

of these algorithms is affected by sensor sensitivity, making them challenging in a real farm 

environment. DL approaches eliminate these arduous tasks by directly processing the image 

by the application of DNN, as shown in Fig. 4. Thus, DL is also considered as feature 

learning (Kamilaris and Prenafeta-Boldú, 2018). Additionally, DL models have achieved 

higher accuracy due to their ability to avoid errors associated with segmentation and 

erroneous feature vectors. Furthermore, DL allows massive parallelization of computations 

due to the complex models. Therefore, complex problems can be solved at faster 
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computational speeds (Pan and Yang, 2010). Therefore, more research is currently focusing 

on optimum network architecture rather than on feature engineering in conventional image 

processing methodologies.  

In DL, both the local and inter-relationships of data are learned in a hierarchical structure 

through several levels of abstraction (each layer transforms the input data from the previous 

layer into a new representation at a greater abstraction level). A non-linear function in each 

layer of a DL model transforms the data into representation in each layer. This hierarchical 

feature representation learning allows DL models to be successfully applied in classification 

and predictions in various artificial intelligence applications, i.e., audio, raster-based data, 

time-series data (Kamilaris and Prenafeta-Boldú, 2018; Sehgal et al., 2017; Song et al., 2016). 

DL monitoring systems follow the steps image pre-processing, data augmentation, modeling, 

and finally, classification or regression, as shown in Fig 4. Similar to ANN, DL models are 

trained by a backpropagation algorithm together with an optimization algorithm that updates 

the network weights to minimize the loss function. This section will present a review of 

various DL model architectures, data pre-processing techniques, data augmentation 

methodologies, and DL systems in the monitoring of poultry. 

 

Fig. 4: The general workflow of deep learning-based chicken monitoring systems 
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3.1. Deep learning categories  

This study will present a brief discussion on some of the popular DL architectures, i.e., 

Convolutional Neural Networks (CNNs), Recurrent and Recursive Neural Networks, and 

Pretrained Unsupervised Networks. Generally, each architecture has a specific appropriate 

area of application, and some are already pre-trained to provide accurate classification in 

particular domains (Kamilaris and Prenafeta-Boldú, 2018; Pan and Yang, 2010). The popular 

platforms for development and testing of DL models are TensorFlow, Keras, Theano, Matlab, 

Pylearn2, Caffe, TFLearn, and PyTorch, 

3.1.1. Convolutional Neural Networks (CNNs) 

CNN is the most popular architecture applied in computer vision tasks and natural language 

processing. CNN is a multi-layered network that can learn features of a target to perform an 

autonomous detection. It comprises several neural layers, i.e., convolutional, non-linear 

activation layer, pooling, and fully connected layers. Each layer transforms the input to 

output for neuron activation, which eventually leads to the final fully-connected layers, thus 

resulting in the mapping of an input to a 1D feature vector. CNN perform convolution instead 

of standard matrix multiplication in their layers as opposed to the conventional neural 

networks. The main attributes of CNN are parameter sharing (tied weights, i.e., only a single 

set of parameters are learned for each location of an image) and sparse interactions (making 

the kernel smaller than the size of the input, hence, reduced memory utilization and 

computational overhead) (Hosseini et al., 2020). Fig. 5 presents the general structure of CNN 

architecture.  
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Fig. 5: Convolutional Neural Network architecture. 

In the convolutional layers, CNN applies various kernels to convolve the entire image to 

generate feature maps. The non-linear activation layer, i.e., the Rectified linear unit layer 

(ReLU), improves the training speed and increases the non-linearity of the feature maps 

(inputs) by applying a function. The pooling layer reduces the spatial dimensions of the input 

volume. However, the pooling layer doesn’t affect the depth but only the width and height of 

the input volume. This operation is referred to as down-sampling or subsampling. This 

decrease in size leads to low computation complexity in the proceeding layers and prevents 

overfitting. The fully-connected layers perform the high-level reasoning in the neural network 

by converting 2D feature maps to a 1D feature vector. The obtained vectors could be fed 

forward into categories for classification (object detection task) or as feature vectors for 

further processing. Several CNN architectures have been created over the years, i.e., LeNet, 

AlexNet, ResNet, GoogLeNet (Inception), VGGNet, MobileNet, SqueezeNet, and Capsule 

Networks (CapsNet).  

ResNets, also known as Deep Residual Networks, presented a solution to solve complex 

problems in CNNs as the network becomes deeper (vanishing gradients) (Balduzzi et al., 
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2017).  ResNet consists of a series of residual modules (layers), and each layer is a function 

set to be performed on an input with the gradient signal capable of feedback to earlier layers 

via shortcut connections (Balduzzi et al., 2017; He et al., 2016; Kawaguchi and Bengio, 

2019). ResNets have the advantages of being more accurate and require less weight in some 

cases and being highly modular. Additionally, they can be designed to determine how deep a 

network can be. The main disadvantages of ResNets are that for a deeper network, the 

detection of errors becomes difficult. Additionally, if the network is too shallow, the learning 

might be very inefficient.  

ResNets resulted in deeper networks, while Inception resulted in wider networks. Inception 

was intended to improve the computational efficiency in the training of larger networks 

(scaling up neural networks without compromising the computational cost) (Szegedy et al., 

2016b). In a convolutional network, each layer extracts different types of information from 

the previous layer. An Inception module computes several different transformations over the 

same input map in parallel and concatenates their results as a single output. To solve the 

computational bottleneck, Inception performs dimensionality reduction by the use of a 1 x 1 

convolution across multiple channels to extract spatial information and compressing this 

information down to a lower dimension. Therefore, by reducing the number of input maps, 

Inception can stack different layer transformations in parallel, thus, resulting in 

simultaneously wide and deep networks. Inception has evolved from the first version known 

as the GoogLeNet to Inception v2, v3, and v4. In v3, the 5 x 5 convolution was replaced with 

two consecutive 3 x 3 convolutions. The current version v4 applied the residual connections 

within each module resulting in an Inception-ResNet hybrid (Szegedy et al., 2016a). 

The Xception stands for extreme inception. Consider that in a traditional convolutional 

network, convolutional layers seek out correlations across both depth and space. While in 

Inception, a 1 x 1 convolution is used to project an original input into numerous separate, 
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smaller input spaces. From each input space, different types of filters are applied to 

manipulate those smaller 3D blocks of data. However, in Xception, instead of partitioning the 

input data into several compressed primitives, the spatial correlations for each output channel 

is mapped separately, then performs a 1 x 1 depth-wise convolution to capture cross-channel 

correlations (Chollet, 2017). This operation can be referred to as depth-wise-separable-

convolution, i.e., spatial convolution done independently for each channel, followed by a 

point-wise convolution (1 x 1 convolution across channels) (Chollet, 2017). 

The VGGNet follows the typical layout of basic convolutional networks, i.e., a series of 

convolutional, max-pooling, and activation layers before the fully-connected classification 

layers at the end (Simonyan and Zisserman, 2014). The MobileNet is essentially a 

rationalized version of the Xception architecture optimized for mobile applications. The 

SqueezeNet is powerful DL architecture that’s efficient in low bandwidth platforms. It is 

based on a CNN architecture but with 50 times fewer parameters than AlexNet and maintains 

AlexNet-level accuracy on ImageNet (Iandola et al., 2016).  The CapsNet, a multi-layer 

capsule system, is an advanced variation of CNNs that deepens in terms of nesting or internal 

structure (Sabour et al., 2017). It’s mainly used for accurate image recognition tasks because 

it is robust to geometric distortions and transformations. Thus, it can exceptionally handle 

orientations, rotations, and translations.  

CNN-based algorithms can be divided into two broad categories; two-stage target detection 

algorithms, i.e., R-CNN (Girshick et al., 2014), Fast R-CNN (Girshick, 2015), Faster R-CNN 

(Ren et al., 2015), Mask R-CNN (He et al., 2017), that uses Region Proposal Network (RPN) 

to generate the anchor boxes, after which the detection network performs prediction. The 

one-stage target detection algorithm is the second category that includes OverFeat (Sermanet 

et al., 2013), SSD (Liu et al., 2016), YOLO (Redmon et al., 2016), YOLO9000 (Redmon and 

Farhadi, 2017), YOLO v3 (Redmon and Farhadi, 2018). These algorithms predict the target 
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location and category directly. Hence, they are faster than two-stage target detection 

algorithms and are applied in real-time detection systems.  

3.1.2. Recurrent and Recursive Neural Networks 

These are networks that can handle time-series data, i.e., Recurrent Neural Network (RNN), 

Recursive Neural Network, Attention, and Long Short-term Memory (LSTM). 

RNN is a network whose current output is based on both the present input data and the 

learning based on previous data. Therefore, RNN is applied in applications where the 

sequence in which data is presented is vital, i.e., machine translation, speech synthesis, and 

natural language processing. Every computed information is stored (hidden state vector) and 

utilized to compute the final output. However, the same input can result in different outputs 

depending on the previous inputs in the data series. RNN is referred to as recurrent because 

the same task is performed for every element in the series, resulting in the generation of 

different fixed-size output vectors where the hidden state vector is updated for every input. 

Therefore, RNN captures both sequential and time dependencies between data. (Gulli and Pal, 

2017; Haque and Neubert, 2020; Hosseini et al., 2020). RNNs are suitable for sequential data 

because they share weights across time steps and can perform one to many, many to many, 

and many to one mapping. There are two varieties of RNN, the Bidirectional RNN (BRNN) 

and the Encoder-Decoder RNN (EDRNN). The output of a BRNN depends on both the past 

and future outputs, i.e., RNNs makes inferences from the present data point in a sequence 

relative to both future and previous data points. The EDRNN can map the input data 

sequence into variable-length output sequences (Hosseini et al., 2020). RNNs can be made 

deeper (adding multiple layers for faster learning and improved network performance) by 

adding more hidden state layers, adding more layers between the hidden state layer and the 

output layer, adding non-linear hidden layers between the input layer and the hidden state 

layer or applying all the three (Haque and Neubert, 2020).  
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Recursive neural networks have a return loop to feed the network into itself. This allows for 

the identification of input data constituents and their relationships through a binary tree 

structure and shared-weight matrix (Hosseini et al., 2020). Recursive neural networks are 

characterized by a top-down propagation method and a bottom-up feed-forward method. 

There are two main types of Recursive neural networks, i.e., supervised recursive neural 

tensor (applied in computer vision) and the semi-supervised recursive autoencoder (applied in 

sentence deconstruction). The main advantage of Recursive neural networks over RNNs is 

that they can capture long-term dependencies efficiently. However, Recursive neural 

networks suffer from substantial computational overhead than the RNNs (Goodfellow et al., 

2016; Hosseini et al., 2020).  

The LSTM is a special RNN that applies recurrent edges as a solution to the vanishing 

gradient problem. LSTM  use memory cell to hold information and a set of gates (input, 

forget, and output gates) to indicate the status of the memory cell (Sundermeyer et al., 2015, 

2012). The contents of the memory cell are modified by the input and forget gates conditions 

at each time step. The input gate selects the new information that should be added to the cell 

state. The forget gate selects which information should be discarded from the cell state. The 

output state selects relevant information from the cell state as the output. 

3.1.3. Pretrained Unsupervised Networks (PUNs) 

PUNs are DL models whose hidden layers are trained by unsupervised learning to achieve an 

accurate fitting of the dataset. The layers are trained (unsupervised learning algorithm) 

independently sequentially, such that the input of a layer is the previously trained layer. The 

whole model is then fine-tuned using supervised learning after each layer has been pre-

trained. Types of PUNs include Generative Adversarial Networks (GAN), Autoencoder, and 

Deep Belief Networks (DBNs) 
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Fig. 6: The Autoencoder architecture 

An autoencoder neural network applies a backpropagation algorithm in an unsupervised 

environment. The input is compressed into a latent-space representation, and the output is the 

same or close to the input values (learn a representation for dimensionality reduction). They 

are popular in anomaly detection applications, i.e., fraud detection in financial transactions. 

The network comprises an encoder and decoder parts, as shown in Fig. 6. The input data is 

compressed by the encoder into latent-space representation, while the decoder performs the 

data reconstruction (output from the latent-space representation). Autoencoders cannot be 

applied as a generative model due to discontinuities in the latent space representations 

(Haque and Neubert, 2020). Therefore, variational autoencoders were introduced as a 

solution. Whereby the encoder outputs two vectors (mean and standard deviation) rather than 

one. This allowance enables the decoder to correctly decode values with small variations of 

the same input (Haque and Neubert, 2020). There are four main types of autoencoders, i.e., 

Vanilla, Multilayer, Convolutional, and Regularized autoencoders. The vanilla is the simplest 

autoencoder with a neural network with one hidden layer. Multilayer is an autoencoder with 

more hidden layers. Convolutional is an autoencoder with convolution layers instead of fully-
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connected layers. Lastly, the Regularized autoencoder applies a special loss function to 

improve performance.  

GANs involves the training of two DL models (the generator and the discriminator) 

simultaneously that compete with each other. The generator creates new instances by 

modeling a transform function during training. In comparison, the discriminator classifies if 

an instance originates from the generator or the training data, while the former maximizes the 

final classification error while the later minimizes the error between the generated data and 

the training data. Thus, the two networks are referred to as adversaries. Hence, the whole 

network improves with each iteration during training. GANs are widely applied in computer 

vision, especially in image generation and also in speech, prose, and music because of GANs 

ability to mimic any distribution of data in any domain (Hosseini et al., 2020). 

GANs have the advantage that it requires no deterministic bias, unlike the variational 

encoders, they allow for efficient training of models in a semi-supervised setting. However, 

the main drawbacks of GANs are that the performance of the generator and discriminator are 

crucial in the success of GAN, and the whole model fails if one system (generator and 

discriminator) fails. Additionally, training GAN is computationally expensive with high 

training time due to the two-model training.  

DBNs is an extensive layered network structured by connecting several smaller unsupervised 

neural networks. A DBM is composed of Belief Net and the Restricted Boltzmann Machine 

(RBM) (Hosseini et al., 2020). Belief Net is composed of connected layers (binary unit 

layers), each assigned a weight function (layer-by-layer learning). The probability of the 

binary outcome depends on the weight factor and the bias inputs. RBM is a stochastic RNN 

designed on the principles of energy-based models (EBMs) (Haque and Neubert, 2020; 

Hosseini et al., 2020). Learning is performed by minimization of the energy function, and 
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prediction is achieved by determining the values of residual variables that minimize the 

energy based on observed variables. The RBM consists of one input layer and one hidden 

layer without an output layer. Another type of RBM is the Deep Boltzmann Machine (DBM), 

characterized by undirected connections. Hence, DBM is robust in handling certainty due to 

noisy inputs.  

3.2. Image pre-processing 

Image pre-processing is performed before the image is fed as an input to the DL model. 

Image resizing is the most common image pre-processing procedure for the image to adapt to 

the DL model requirements. In the deep regression network (AlexNet and ReLU activation 

function), Fang et al. (2020) resized the input image to 960 x 540 from 1920 x 1080 

resolution. Similarly, Zhuang and Zhang (2019) performed a resizing operation to have a 512 

x 512 input image resolution. In a comparative analysis between Faster R-CNN and YOLO 

v3 in recognition and classification of broiler droppings, J. Wang et al. (2019) resized images 

from 5760 x 3240 resolution.  

Data labeling which involve the creation of bounding boxes is another vital pre-processing 

procedure. Data labeling is often performed manually to reference the ground truth by a 

bounding box. Labeling software such as LabelImg (Windows-based) is applied to draw the 

bounding boxes and extract their co-ordinate locations. Ground truth labeling is a vital step in 

classification tasks as it provides a basis for performance evaluation of the proposed detector 

(Zhuang and Zhang, 2019). The procedures mentioned above are the main techniques that 

have been applied in poultry monitoring DL modeling systems. Other pre-processing 

operations include image segmentation to highlight the ROI hence, facilitating the learning 

process as performed by Fang et al. (2020). Background removal or foreground pixel 

extraction can also be performed to reduce the effect of noise in the dataset (Kamilaris and 

Prenafeta-Boldú, 2018). 
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3.3. Data augmentation 

DL models need a lot of training data to achieve an appropriate convergence for better 

recognition accuracy while at the same time, avoiding over-fitting. Therefore, data 

augmentation technique is performed to expand the training data by a dynamic transformation 

of the data without changing their classification. If k is the number of augmentation 

techniques applied, then the total number of images used in training will be (k+1)-fold of the 

original dataset. Additionally, the image transformation effectively increases the training set 

without the need to store a large augmented training set. Table 8 presents the data 

augmentation techniques applied in the DL data processing. 

Table 8 here 

3.4. Deep learning applications 

Several studies have applied DL models in poultry monitoring systems ranging from behavior 

classification, tracking, sick birds’ detection, to droppings classification. Pu et al. (2018) 

developed a CNN detector to classify chicken flock behaviors at the feeders using color and 

depth images (two parameter-sharing CNNs). His network consisted of three convolutional 

layers, each with a rectified linear unit (ReLU) activation function, a max-pooling layer with 

a local response normalization step. The system achieved an accuracy of 99.17% in the 

chicken behavior classification. A Faster R-CNN chicken activity detector combined with the 

temperature-humidity index (THI) was used to monitor heat stress in chicken (Lin et al., 

2018). The detector applied the Zeiler and Fergus network (Zeiler and Fergus, 2014) as the 

base CNN. The chicken movement was determined by tracking the chicken location between 

subsequent frames using the minimum distance matching and color feature matching 

techniques. As already mentioned, the detection speed of YOLO v3 is faster (real-time) 

compared to other two-stage target detection algorithms because it is an end-to-end target 
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detection algorithm. Wang et al. (2020) presented a real-time behavior detector. This system 

could detect six chicken behaviors at the highest mean precision rate of 94.72%. An 

improved SSD was introduced by Zhuang and Zhang (2019) for sick broiler detection. The 

introduced Improved Feature Fusion Single Shot MultiBox Detector (IFSSD) had the 

InceptionV3 architecture of a 1 x 1 convolution of three different size layers and features 

generated by a feature pyramid network. The detector could detect broilers and their health 

status simultaneously at a mean average precision (mAP) of 99.7%. As the number of 

network layers increases, there often arises the problems of difficulty of network optimization 

and disappearance of gradient descent. Therefore, Zhang and Chen (2020) developed a  sick 

chicken detector based on ResNet residual network. Taking advantage of ResNet having an 

excellent training performance even for deep networks and improving its network structure, 

the proposed network adopted to different recognition environments. Fang et al. (2020) 

presented the TBroiler tracker, whereby chicken tracking was performed as a regression task 

by developing a deep regression network composed of five convolutional layers and three 

fully-connected layers. Additionally, Fang et al. (2020) pointed out that adding a local 

response normalization (LRN) layer and a pooling layer for max-pooling between the 1
st
 and 

2
nd

 layer and between the 2
nd

 and 3
rd

 layers effectively prevents overfitting. This technique 

achieved a mixed tracking performance evaluation of 0.730 at a processing speed of 30.53 fps.  

Apart from the mentioned machine learning and DL techniques, studies have applied other 

modeling techniques. The transfer function (TF) represents the relationship between the input 

and the output signals of a control system for all possible input values. The parameters of a 

TF model can be estimated using several estimation techniques such as least squares (LS), 

state variable filters approach, instrument variable approach, generalized Poisson moment 

functions approach, etc. However, due to noise, the model parameters become asymptotically 

biased when LS is applied. Therefore,  Leroy et al. (2006) applied a simplified refined 
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instrumental variable (SRIV)  to estimate TF model parameters from an optimal shape 

posture parameters (ellipse shape model) to determine two dynamic parameters to predict a 

chicken behavior depending on the previous behavior. The technique successfully classified 

scratching, walking, and standing behaviors. As already mentioned, feature extraction 

engineering in an arduous task. Therefore, Zaninelli et al. (2018) performed bird recognition 

from a shape classification point of view. A normalized cross-correlation was performed 

between a processed image and a template to detect multiple nest occupancy (template 

comparison). 

Animals are CIT systems that are individually different and respond differently at different 

moments. Therefore, they can’t be analyzed as a typical classical steady-state system 

(Berckmans, 2006). Additionally, Dawkins et al. (2009) and (Dawkins et al. (2012) reported 

that there was no simple association between acceleration and velocity, kinematic features 

with a bird’s GS. Therefore, Nääs et al. (2018) allowed for contradictions within a degree of 

certainty in the estimation of broiler chicken GS using the kinematic features by applying 

inconsistency-tolerant, Paraconsistent logic. 

4. Challenges and future direction 

In an ideal environment and specific controlled chicken movements, the current computer 

vision methodologies provide auspicious results. However, in a real farm environment, the 

task of monitoring chicken becomes complicated. Chickens in flocks are sometimes occluded 

by other chicken, hence, changing their morphological parameters. Additionally, the variation 

of ambient light conditions and shadows significantly affect sensor stability. Therefore, 

further research and development are necessary to establish the commercial viability and 

applicability of these poultry monitoring systems. These challenges need to be addressed 
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through combined approaches between livestock science and engineering for improved 

overall performance and robustness of chicken monitoring in PLF.  

4.1. Live weight estimation systems 

Good animal welfare is characterized by good health and productivity in livestock production. 

In comparison to human health, measuring individual weight and height is a common practice 

in a clinical check-up. Similarly, in livestock production, live body weight provides important 

information on feed conversion efficiency, growth, health, body uniformity, and market 

readiness (Okinda et al., 2018a; Wongsriworaphon et al., 2015). Additionally, monitoring 

animal weight during the entire growing period can be used to assess management strategies 

such as feeding rations and slaughter time. Hence, if the measured weight doesn’t coincide 

with the expected growth curve, then it would be a clear indication of a problem such as 

disease occurrences or other vitality issues for required counter-measures to be undertaken 

(Mollah et al., 2010; Mortensen et al., 2016). Therefore, animal live weight is an indicator of 

animal welfare conditions. Thus, it is necessary to accurately estimate an animal weight and 

weight distribution of the entire population throughout the rearing period. 

Several studies have introduced chicken weighing systems based on computer vision based 

on 2D (Amraei et al., 2017b; De Wet et al., 2003; Mollah et al., 2010) and 3D (Mortensen et 

al., 2016) images. The basic principle of machine vision-based weighing systems is the 

correlation of image object shape geometric features to animal weight or volume. This is 

theoretically simple but quite challenging in a real farm environment. As already mentioned, 

firstly, the bird’s body must be segmented from the background (ROI extraction). Secondly, 

the chicken’s body segmented from the image is to be presented by describing characteristics 

(feature extraction). Thirdly, these describing characteristics are correlated to the bodyweight 

by a mathematical model.  
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De Wet et al. (2003) pioneered the application of computer vision in chicken live weight 

estimation. The study developed linear and nonlinear regression models to correlate image 

area and perimeter geometric features to the real chicken live weight and achieved a relative 

error of 10% and 15% using surface-area and perimeter, respectively. Mollah et al. (2010) 

developed a similar system but accounted for the bird’s age in their model to achieve 0.999 

R
2
 with the highest relative error of 16.47%. In a real farm environment, chickens always 

flock together. Therefore, for a practical farm environment application, an automated, robust 

weighing system should be capable of estimating the live weight of each chicken in the flock.   

Amraei et al. (2017a) and Amraei et al. (2017b) reported having developed a multiple-bird 

weight estimation system based on an ellipse fitting technique to localize the chicken in a pen, 

after which 2D feature extraction was performed. Both studies reported an R
2
 of 0.98 based 

on ANN and SVM regression models, respectively.  The mentioned systems were based on 

visible light-based sensors (RGB images). However, these sensors are susceptible to variation 

in ambient light; hence, they are prone to errors (Okinda et al., 2019). Mortensen et al. (2016) 

applied the structured infrared-light (IR) based sensor, which is invariant to illumination 

conditions, to predict the weight of broiler chicken based on both 2D and 3D image features 

at an average relative mean error of 7.8%.   

Poultry weight estimation systems are mainly challenged by variation of ambient lighting 

conditions and the localization of a bird when in a flock condition. To address the problem of 

variable light conditions, the solution would be the use of illuminant invariant cameras and 

flexible image sensors in the farm environment. IR-based depth cameras such as the 

Microsoft Kinect have been applied in weight estimation by Mortensen et al. (2016). 

However, IR depth cameras are sensitive to sunlight, thus, limiting their application to an 

indoor environment. However, illuminant invariant visual light-based cameras (Jansen‐ van 

Vuuren et al., 2016) are readily available in the market they haven’t been applied in poultry 
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monitoring systems. Providing a controlled lighting environment for visual light-based 

sensors can be another solution, although it's challenging if not infeasible due to farm 

structure, size, and other complexities. Therefore, the potential research and development 

area could be to provide a controlled illumination in the farm environment for image 

acquisition in farmhouses and the use of illuminant invariant cameras. 

Occlusion and overlap of birds significantly affect morphological features, hence, affecting 

the performance of the regression model, as demonstrated in the study by Mortensen et al. 

(2016), whereby the estimation errors increased as the flock density increased. Some studies 

have approached this problem from a segmentation point of view. For example, Amraei et al. 

(2017b) applied the ellipse fitting technique to segment birds. However, in their presentation, 

the birds were not occluded as depicted in the study by Mortensen et al. (2016), who applied 

a watershed algorithm using depth distance as the height function. Additionally, a bird is a 

non-rigid shape; hence template matching and partial shape matching are quite challenging.  

More future research should focus on efficient ROI segmentation techniques under occlusion 

and no occlusion. These techniques can be based on both template and non-template 

matching and DL techniques. Finally, the instantaneous expression of chicken behavior leads 

to shape deformation, such as flipping of wings, hence, affecting the model performance. The 

strategy would be to incorporate behavior with weight estimation. Such that the introduced 

system should be invariant to instantaneous behavior expressions.   

4.2. Lameness detection systems  

The occurrence of lameness affects the mobility of any legged creature. The term mobility 

refers to the quality or the state of being mobile or the ability to move. Generally, mobility is 

associated with walking or locomotion.  In poultry, immobility is often a sign of chickens 

experiencing some discomfort. These discomforts may result from skeleton (leg) disorders, 

nutrition deficiencies and leg health (dermatitis), infestations (lice and mite), and diseases 
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(Bessei, 2006; Bradshaw et al., 2002; Butcher et al., 1999; Knowles et al., 2008; Paul-

Murphy and Hawkins, 2014). These factors can be categorized as genetical factors and 

environmental factors (illumination, bedding, ventilation, diseases, and stocking density) 

(Almeida Paz et al., 2010; Bessei, 2006; Knowles et al., 2008; Reiter and Bessei, 1997; 

Rozenboim et al., 2004; Tablante, 2013). 

Mobility is an important aspect of a living bio-organism. Being mobile is often perceived as 

being fit and in good health. Moreover, difficulty in walking by birds can result in starvation, 

thus, affecting the feed conversion ratio in terms of weight and growth, chest soiling, hock 

burns conditions, and being an easy target to be preyed on (Kestin et al., 2001; Paul-Murphy 

and Hawkins, 2014; Weeks et al., 2000). Additionally, leg disorders increase mortality 

culling, condemnations, and downgrades from trimming, which account for considerable 

economic losses. Furthermore, according to  Welfare-Quality® (2009), the occurrence of the 

factors mentioned above are indicators of poor animal welfare conditions. Thus, monitoring 

the level of a bird’s mobility provide an assessment for its welfare condition. Thorp and Duff 

(1988) described lameness as a range of injuries resulting from infective and non-infective 

sources. Additionally, based on pathological conditions resulting in lameness and leg 

weakness Bradshaw et al. (2002) classified poultry leg disorders as infectious, developmental, 

and degenerative. Therefore, the general term describing the inability to walk normally due to 

illness or injury affecting the foot or leg is lameness and leg weakness. 

As already mentioned, despite the successes of the kinetic techniques, they were time-

consuming, had a lot of data redundancy, and could not provide continuous and automatic 

monitoring of birds. Hence, it can’t be used as an early detection method. Kinematic 

monitoring of birds was initially introduced by Abourachid (1991) to analyze the GS of 

turkeys. The same approach was applied by Caplen et al. (2012) to contrast the GS of broiler 

chickens and jungle fowl by the use of a 3D temporospatial poultry walk information 
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acquisition system. In comparison, the study established that the jungle fowl had a better GS 

due to fast growth issues in broilers, which promotes a compensatory gait adaptation to 

minimize walking energy which triggers lameness. Additionally, lame broilers were observed 

to have a lower walking velocity and exhibited walking instability. A comparison of the 

effect of NSAID administration on lames by Caplen et al. (2013) established that there was 

an increase in the chicken walk speed after NSAID administration and concluded that the 

model could be useful in assessing lameness-associated pain in broiler chickens. Using a 

paraconsistent logic, Nääs et al. (2018) tracked the centroid of a chicken to compute its 

kinematic features (velocity and acceleration) to estimate the GS of broilers. Despite the 

success of kinematic analysis as a computer vision technique, it suffered a couple of setbacks, 

i.e., markers on the skin locations being displaced during movement, required the bird to 

walk parallel to the camera for accurate measurements to be taken, and this technique was 

both intrusive and invasive to the birds. 

In the analysis of locomotor patterns of chickens, layers’ body moves in a straight line 

because their legs are always under the center of gravity of their body. However, for broilers, 

their center of gravity moves laterally towards the supporting leg. Therefore, the differences 

in horizontal and vertical movements of the left and right legs, cycle period of feet 

movements, irregularities in the motion of the center of gravity of the body, and frequency of 

body center oscillation can be evaluated to detect lameness in birds (Reiter and Bessei, 1997). 

Based on these findings, alternatives to kinematic systems that could provide non-intrusive, 

non-invasive, automatic, and continuous systems for early detection of lameness in chicken 

were developed. A fully automated image monitoring technique by Aydin et al. (2010) was 

capable of measuring the activities of broiler chickens and relating these activities with their 

GS levels. This study established a significant relationship between manual GS and broiler 

activities, with higher GS having lower activities and GS3 being the most active. In the 
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spatial use of mixed broilers, Aydin et al. (2013) returned the same results that GS0 to GS3 

had more movements than all higher GS. Based on the LTL test and NOL, Aydin et al. (2015) 

introduced another automated image monitoring system for lameness detection. The two 

features (LTL and NOL) were then compared to the manual GS and established that NOL 

was positively significantly correlated to GS. In contrast, LTL was negatively correlated with 

GS. These results indicated that this system could be used as a tool to assess lameness in 

broilers automatically. Taking the advantages of 3D depth sensor Aydin (2017a) computed 

LTL and NOL using image depth information. The results obtained were almost similar to 

the later study in that NOL was positively significantly correlated to GS (R
2
 = 0.934), while 

LTL was negatively significantly correlated to GS (R
2
 = 0.949). These findings justified the 

use of a 3D vision monitoring technique as a method of assessing lameness in broiler chicken. 

The most recent study of Aydin (2017b) based on kinematic parameters (lateral body 

oscillation, step length, step frequency, and walk speed) reported a correlation between the 

GS and these parameters at r = 0.861, 0.882, 0.831, 0.844, respectively. The study further 

established a statistical significance in all the feature parameter as a measure of lameness 

(regarding GS), hence, this system can be used to provide an early detection of lameness in 

broilers.  

Variable light conditions and occlusion problems are also a hindrance to lameness detection 

systems in birds. Additionally, as much as kinematic posture trackers have yielded positive 

results, more research should be undertaken in the development of automated body position 

trackers without the use of markers (non-intrusive and non-invasive systems). Moreover, the 

applicable camera position in a real farm environment is still a challenge. Overhead camera 

positions are most preferred, i.e., non-invasive. Aydin (2017a) and Aydin (2017b) applied 

overhead depth and RGB images, respectively. However, as already mentioned, IR depth 

sensors are susceptible to sunlight, hence, limited to indoor applications or would limit the 
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operation time of the system if it is installed in an outdoor environment. Additionally, RGB 

cameras are associated with visual light-based sensor errors.  

Furthermore, these experiments were conducted in a controlled environment, whereby the 

birds' movements were restricted. Therefore, further research should focus on lameness 

detection of chickens in a flock setting such that occlusion problems and dynamic movements 

are considered. Lastly, lameness in chicken is affected by several factors. However, the 

easiest to control from a stockman perspective are the environmental factors such as 

illumination, bedding, ventilation, and stocking density. Therefore, more research should 

focus on the optimum environmental conditions for chicken regarding lameness.  

4.3. Health status classification systems 

According to Welfare-Quality® (2009), the health condition of a bird is a vital indicator of 

good welfare practice.  The term being healthy can be characterized by the absence of a 

disease, whereby disease is any condition that causes a deviation from normal activities and 

functions. Poultry disease occurs due to the interaction between the birds, the environment, 

and the infection agent (non-infectious and infectious). Infectious agents include viruses, 

bacteria, fungi, and parasites, while non-infectious agents include chemical and physical 

toxins and deficiency or excess of minerals and vitamins. The host factors include the bird’s 

age, sex, breed, and immune status. Environmental factors, which are also management 

factors, include air quality and ventilation, stocking density, sanitation, feed quality, lighting 

program, and medication and vaccination programs (Tablante, 2013). Poultry diseases can be 

categorized as Respiratory (Newcastle Disease, Fowl Pox, Avian Influenza, Infectious 

Bronchitis, Infectious Laryngotracheitis, Infectious Coryza, Aspergillosis, Swollen Head 

Syndrome), Viral Diseases (i.e., non-respiratory) (Marek’s Disease, Infectious Bursal Disease, 

Lymphoid Leukosis, Avian Encephalomyelitis), and Non-respiratory Bacterial Diseases 

(Fowl Cholera, Necrotic Enteritis, Omphalitis, Ulcerative Enteritis, Botulism, Pullorum, 
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Staphylococcus) (Butcher et al., 1999). Butcher et al. (1999) and Tablante (2013) made a 

presentation on common poultry diseases and infections, visual symptoms for each disease, 

and prevention and control. Furthermore, Damerow (2016) outlined how to recognize sick 

poultry by observation, dropping examination, and postmortem examination. Current 

computer vision systems perform health classification based on the behavior (posture) 

(Okinda et al., 2019; Zhang and Chen, 2020; Zhuang et al., 2018; Zhuang and Zhang, 2019), 

chicken droppings (J. Wang et al., 2019), locomotor (Okinda et al., 2019), and optical flow 

(Roberts et al., 2012). 

Optical flow measures were used as an early detection system to predict the mortality, hock 

burn, and GS of birds using a Bayesian regression model (Roberts et al., 2012). Zhuang et al. 

(2018) correlated skeleton features of broiler posture images taken from the side at an 

accuracy of 99.469%. Due to the applicable camera position in a real farm environment, 

Okinda et al. (2019) extracted overhead image posture and achieved an accuracy of 0.978. 

Nevertheless, these researches were performed in a controlled environment, where variation 

in illumination was not factored in, and the birds’ behaviors and activities were controlled. 

DL detectors by Zhuang and Zhang (2019) and Zhang and Chen (2020) gave out satisfactory 

results of mean average precision of 99.7% and 93.7%, respectively. The main challenge in 

DL detection of chicken is the lack of an appropriate dataset. Zhuang and Zhang (2019) 

expressed that the currently available bird’s datasets do not have a specific category called 

broilers; hence, it resulted in low recognition accuracy. Therefore, more research should be 

undertaken to develop a poultry dataset with specific categories such as broilers, layers, 

chicks, etc., that can be applied in poultry detection systems. However, this would be labor-

intensive due to the retraining process of new applications. Hence, much research should be 

focused on new learning techniques, i.e., adaptive learning and semi-supervised learning. In 

the study by J. Wang et al. (2019) in the detection of digestive diseases in broilers based on 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

50 
 

color and viscosity of the droppings. However, the color variations of dropping can also 

result from the type of feed. Similarly dropping viscosity will also vary depending on water 

intake. Thus, this technique would be challenging to apply in free range chickens or chickens 

with a diverse feeding program. Furthermore, this would not provide an early detection of 

disease occurrences. Body temperature is another important parameter in the evaluation of an 

animal’s health status. However, temperature monitoring hasn’t been widely applied in 

poultry. Nevertheless,  Xiong et al. (2019) presented a system that could extract the 

temperature of the head region of a broiler from thermal images. Therefore, more research 

should be directed towards region-based temperature detection for infection detection in 

poultry. 

4.4. Poultry tracking systems  

Tracking of poultry is an essential parameter in the assessment of behavioral (types of 

activities) and physical (lameness and health) indicators in poultry welfare. There is a need to 

automatically record the behavior and movement of birds continuously for welfare 

monitoring purpose and behavior phenotyping. Noldus and Jansen (2004) categorized 

automated video tracking systems as analog and digital video tracking systems. Analog 

systems detected high peaks in the voltage of a video signal, i.e., regions of high contrast 

between the bird and background. However, these systems could only track one bird in a 

dedicated experiment set up unit with restricted illumination and background conditions. 

Digital systems allowed for pattern recognition techniques to be applied to image frames for 

the quantitative measurement of the birds. However, this system is limited by the 

computational speed and the complexity of the underlying software. 

Digital image animal tracking systems such as EthoVision have long been applied to several 

laboratory animals since the 1990s in tracking and behavior classification (Noldus et al., 

2001). The system's steps of operation include object identification (size and color), feature 
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extraction, feature changes from the previous frame, and tracking and behavior detection. The 

chicken tracking system was pioneered by Sergeant et al. (1998), who performed tracking 

based on centroid detection and curvature analysis to separate touching birds. However, 

centroid tracking was challenging due to several factors such as; if a bird moves faster than 

the threshold value, the tracked centroid was lost on some occasions, the centroid was 

assigned to the noise region, total occlusion (bird squeezes under another bird) led to an 

ambiguity such as the tracked centroids interchanged. Fujii et al. (2009) applied a particle 

filter algorithm to track poultry. The system applied two trackers, i.e., poultry trackers and 

exploring trackers. The former detected the chicken’s location while the latter searched and 

corrected a failed poultry tracker. Similar to the study by Sergeant et al. (1998), absolute 

occlusion and quick movements of birds were significant problems in this technique. 

Additionally, heads and tails could be detected as the poultry body during ellipse modeling. 

Furthermore, ambient light variation also influenced the performance of this system. Despite 

the ellipse fitting technique by Kashiha et al. (2014) reporting a superior performance, it lost 

track when the chicken moved very fast. Moreover, this technique was applied to individual 

birds and not as flocks. For multiple birds tracking, Nakarmi et al. (2014) incorporated Radio 

Frequency Identification (RFID) to identify and track birds when the vision system failed to 

maintain the identities of the tracked birds. However, tagging of birds with physical 

components is invasive and therefore affects their natural behaviors. In a comparative 

approach, Wang et al. (2016) introduced the hybrid support vector machine. They compared 

it to TLD (Tracking-Learning-Detection), the MeanShift Algorithm, the PLS (object tracking 

via partial least squares analysis), the Particle Filter Algorithm, and the Frag (fragment-based 

tracking method) in the tracking of chicken.  A similar approach was presented by Fang et al. 

(2020), who applied deep regression network. The two techniques were robust and performed 

efficiently in chicken tracking in a flock setup. However, they were single object detection 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

52 
 

(only one bird tracking problem) and not a multi-objects detection problem, hence, could 

only detect and track one bird in a flock. More research and developments should be 

performed to develop a multi-object tracking such that several birds can be tracked 

simultaneously in a flock. Multi-object detection has recently received a lot of recognition 

and has already been applied in sick broiler detection by Zhuang and Zhang (2019). 

Additionally, more research should be driven towards DL networks using non-visible light-

based sensors to eliminate the illumination variation problems and to allow for tracking to be 

performed even during dark hours (lighting regime).   

4.5. Behavior monitoring systems  

The discipline that is closely related to animal welfare is the animal behavior and is 

considered as behavioral indicators in welfare assessment. In a good welfare condition, the 

animals should be able to express their natural behavior patterns due to no or minimal stress.  

However, studies have reported the difficulty in differentiating between standard 

physiological stress and productive indicators of stress, and at times contradicted each other 

(Marıa et al., 2004). Additionally, sampling techniques or direct observation are invasive 

despite being the initial point for the development, validation, and implementation of non-

invasive automated behavioral systems.  Nevertheless, several poultry behavior monitoring 

systems based on computer vision have been introduced.  

From a complex system approach, Marıa et al. (2004) expressed that the complexity of the 

behavior of animals reduces with stress. The study applied fractal analysis rather than a 

conventional Euclidean geometry to the quantification of temporal heterogeneity of time 

series behavioral sequences. Optical flow analysis has also been used to correlate the optical 

flow measures to behavior and GS. Dawkins et al. (2009) presented that a higher mean 

optical flow is associated with greater bird activities in terms of striding and walking rate. 

Additionally, behavior was highly significantly correlated to GS. In another study by 
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Dawkins et al. (2012), mean optical flow was negatively related to flock mortality, while 

kurtosis and skew were both positively correlated to mortality, GS, and hock burn. Dawkins 

et al. (2013) pointed out that there exists no simple connection between optical flow and 

behavior when they found that the mean optical flow was not negatively correlated to birds 

sitting or lying nor a positive correlation between birds walking and optical flow. However, 

mortality, GS, leg health were positively correlated to birds sitting or lying and negatively 

correlated with birds walking.  Colles et al. (2016) applied the same technique to detect 

Campylobacter infected chicken; the study established a higher mean and lower kurtosis for 

infected birds. Despite the success of the optical flow analysis, they only presented the 

relationships between welfare indicators, behaviors, and optical flow measures but not the 

type of behavior.  

More research has been focused on developing behavior type recognition techniques based on 

developed ethograms as in the study by Pereira et al. (2013) and Marıa et al. (2004). Leroy et 

al. (2005) developed a dynamic model to recognize six different laying hens’ behaviors 

(sleeping, standing, sitting, grooming, pecking, and scratching). A similar approach was 

presented by Pereira et al. (2013), who applied a classification tree to identify nine chicken 

behaviors (Wing spreading, Drinking, Bristling, Resting, Scratching, Stretching, Mounting, 

Preening, and Inactivity). To eliminate the process of feature extraction engineering and 

errors associated with visible light-based sensors, Pu et al. (2018) proposed two parameter-

sharing CNNs for both RGB and depth images to classify flock behaviors at the feeders as 

non-crowded, a little crowded, and fairly crowded. A more straightforward technique to 

determine the number of birds at the feeder and drinker under temporal and spatial 

preferences was presented by G. Li et al. (2019). However, the technique suffered occlusion 

problems. Behavior changes are instantaneous; therefore, real-time monitoring systems are of 

great significance. Wang et al. (2020) capitalized on the fast speed of YOLO v3 to develop a 
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real-time behavior detector capable of classifying six behaviors mating, standing, feeding, 

spreading, fighting, and drinking. 

More research and development should be focused on developing behavior detection systems 

with illumination invariancy, factors in the background complexity, overlapping, and 

occlusion problems. The application of improved YOLO v3 has solved these problems, 

referred to as the YOLO v3-dense model (Tian et al., 2019), whereby DenseNet is used to 

process feature layers with compromised images (low resolution, occluded objects). Similarly, 

the speed and performance of the real-time YOLO v3 system can be improved by extending 

the detection scale and down-sampling of feature fusion target detection layer (Ju et al., 2019). 

The mentioned improvements haven’t been applied in chicken monitoring CNN-based 

systems. Therefore, more research should be performed to improve the performance of real-

time detection models.   

4.6. Activities and other monitoring systems 

Animal activity is highly associated with behavior levels, GS, and health. In computer vision 

systems, activity is measured as percentage pixel change over the total area coverage over a 

period of time, i.e., the higher the activity levels, the higher the difference in pixel values.  

EthoVision XT and eYeNamic are software that can directly compute the activity of birds 

from surveillance video input and has been applied in several studies (Aydin et al., 2010; 

Fraess et al., 2016; Van Hertem et al., 2018).  The activity index of birds was assessed with 

relation to thermal stress by Bloemen et al. (1997). During cold stress, the birds huddled 

together, while during thermal stress, the chickens occupied more floor space. A similar 

approach was presented by Kristensen et al. (2006) to evaluate the relation between 

illumination intensity and broiler activity. The broilers' activities were significantly higher 

during high-intensity periods.  eYeNamic software was applied by Aydin et al. (2010) to 

correlate the activity index to GS. The study established that higher GS had significantly 
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lower activities. Similar results were achieved by Aydin et al. (2013) in the spatial use of 

mixed chickens. To control chicken activities in a pen, similar to the work by Bloemen et al. 

(1997), Youssef et al. (2015) compared the dynamic variations of the activity index of 

chickens to a 2D spatial profile of airflow and the temperature pattern inside the pen. The 

study reported that during cold stress, the birds occupied low air velocity zones, while during 

thermal stress, the birds occupied high air velocity zones. The activity level and flock 

distribution data were used to determine the GS  of birds by Van Hertem et al. (2018) based 

on eYeNamic software analysis. The study reported that GS and activity were negatively 

correlated, while GS and flock distribution was positively correlated. Therefore, flock GS 

could be predicted from continuous monitoring of flocks by video surveillance. Similarly, the 

animal distribution index was computed by eYeNamic software by Kashiha et al. (2013) to 

detect any problem in a broiler house such as thermal discomfort, insufficient feeds, and 

water. The studies mentioned above categorized any changes in a flock as activity without 

considering the intrinsic properties of change nor the type of changes occurring. Therefore, 

more research should be focused on activity deviation with behavior changes regarding 

welfare parameters.  

Other computer vision-based monitoring systems such as floor distribution monitoring at 

drinking and feeding areas (Guo et al., 2020), effect of feeder types (Neves et al., 2015), type 

of light illuminance (Kristensen et al., 2007), backpack (Stadig et al., 2018) on bird’s 

behavior have also been presented regarding activity and behavior monitoring.  However, 

animal behavior is a complex bio-response to both internal and external stimuli. Therefore, 

more research should be directed towards the drivers of behavioral responses such as pen 

construction designs and materials and structures inside the pen as well as health and micro-

environment.  
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5. Conclusions  

This review presents a summary of the current monitored bio-processes and bio-responses, 

how they qualify as welfare indicators, and the computer vision techniques applied in the 

surveillance and monitoring of these bioprocesses and bio-responses, the challenges involved, 

and possible solutions to these challenges. Both machine vision and DL techniques were 

discussed.  

For conventional machine learning, the five procedures, i.e., preprocessing, segmentation, 

feature extraction, feature selection, and classification or regression, were discussed in detail.  

The difficulty of poultry monitoring lies in foreground detection due to the complex 

background, variations in illumination, and occlusion problems in a real farm environment. 

Several solutions have been proposed, through the application of non-visible light-based 

sensors, restriction of image acquisition time, factoring in the animal behavior, and using 

depth-based sensors for easier separation of occluded birds.  The extracted ROI, i.e., the bird, 

can then be represented by the feature vectors; four features can be used for this task, i.e., 

morphological, locomotor, optical flow, and other features. These features are always mixed, 

and a dimension reduction or feature selection engineering is applied to create a robust and 

more generalized model. The final modeling procedure is conducted using regression or 

classification-based machine learning approaches. For DL, the tasks of segmentation, feature 

extraction, and feature selection are eliminated by the use of CNNs.  

Much success has been achieved in animal monitoring systems. However, there exist several 

challenging factors for real farm applications (occlusion, lighting condition, etc.). Several 

studies have presented possible solutions. These studies presented good results in dedicated 

environments, hence, compromised a robustness and generalization ability of these systems. 

DL approaches have great potential. However, they require a vast amount of labeled dataset 
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as an image dataset with ground truth annotations, and samples are of great significance in 

model development and for testing of algorithms.  

Generally, appropriate image processing algorithms in computer vision are essential for the 

poultry monitoring in the farm environment for precise localization of birds. This will be 

pivotal in the monitoring of several bioprocesses and bio-responses and also provide a 

solution to occlusion problems. Even though several challenges still exist, more researches 

are being performed to improve the monitoring systems in poultry.  
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Table 1: Color space transformation from RGB, adopted from A. Wang et al. (2019) 

Color model Channel   Color space transformation from RGB 
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Table 2: Main segmentation techniques in poultry monitoring systems 

Main Segmentation 

technique 

Additional technique Camera sensor  Resolution  Frame rate Reference  

Background subtraction  Pixel intensity threshold, and 

Ellipse modeling  

Sanyo VCB-3572IRP BW 

CCD 

- - Leroy et al. (2006) 

 Pixel intensity threshold and 

Region-based hysteresis 

- - - Sergeant et al. (1998) 

 Watershed algorithm, 

smoothening, and Sobel 

gradient operator 

Cambube3 - 5 fps Nakarmi et al. (2014) 

 Depth threshold, Smoothening 

and morphological 

opening 

Kinect v2 512 x 424 1 fps Okinda et al. (2019) 

 Pixel intensity threshold and 

color filter 

Logitech Webcam Pro 9000 640 x 480 5 fps Aydin et al. (2013) 

 Pixel intensity threshold  Guppy F036C 1024 × 768 3.5 fps Aydin et al. (2010) 

 Pixel intensity threshold and 

Ellipse model 

Guppy F036C 1024 × 768 3.5 fps Aydin et al. (2015) 

 Pixel intensity threshold and 

Ellipse model 

Guppy F036C 1024 × 768 5 fps Aydin (2017b) 

 Pixel intensity threshold CCD camera 640 x 480 1 fps Youssef et al. (2015) 

 Pixel intensity threshold Monochrome CCD camera 256 x 256 - Bloemen et al. (1997) 

Threshold-based Contrast enhancements, 

Erosion and dilation 

- - 16 fps Pereira et al. (2013) 

 Color threshold and Region 

crop 

Mikrotron EoSens - 300 fps Mehdizadeh et al. (2015) 

 Pixel frequency distribution 

histogram 

Thermo GEAR-G120  (320 × 240) - Zaninelli et al. (2018) 

 Color space conversion and 

morphological corrosion 

PRO-1080MSFB  1440 × 1080 15 fps Guo et al. (2020) 

 Color and, Binarization 

threshold 

Sony Handycam Memory 

Flash PJ200 

1080 x 1920 60 fps Nääs et al. (2018) 

 Binarization threshold 3D Kinect camera 640 x 480 30 fps Aydin (2017a) 

 Erosion and dilation Sony Cyber-shot - - Mollah et al. (2010) 

 Smoothening, erosion, and 

dilation 

Samsung (SM-N9005) - - Amraei et al. (2018), 

(Amraei et al. (2017b), 

Amraei et al. (2017a),   

 Erosion and dilation - - - De Wet et al. (2003) 

 Global threshold, 

morphological closing 

Aventura, CAM5D24DNVP 704 × 480 30 fps Kashiha et al. (2014) 

 Pixel intensity threshold InterM, CCD Digital 

Color Camera VDC413 

- - Kristensen et al. (2006) 

 Morphological erosion 

Image cropping  

Sony DCR-TRV330 - - Neves et al. (2015) 

Ellipse modeling Color space conversion, and K-

means clustering 

Logitech C922 CCD 640 x 480 - Zhuang et al. (2018) 

 Morphological closing, 

adaptive threshold 

Fluke TI32 320 × 240 - Xiong et al. (2019) 

Watershed  Smoothening and 

morphological 

opening 

Kinect camera 640 x 480 15 fps Mortensen et al. (2016) 

Point Distribution 

Model 

- Sanyo VCB-35721RP BW 

CCD 

- - Leroy et al. (2005) 
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Table 3: Shape geometric parameters applied in shape analysis 

Dimension  Geometric features Definition  

2D Centroid    .
 

 
∑      
 
   /  

Area         
 

 
∑ (             )
 
     

Perimeter         ∑ ‖(         )  (     )‖
 
     

Radial distance    ‖    ‖  

Convexity    
     

      
  

Solidity    
      

     
  

Aspect Ratio    
(         )

(         )
  

Circularity ratio (area)     
      

       
 
        

      
  

Circularity ratio (perimeter)     
      

       
   

Circle variance 
   

  

  
  where    

 

 
∑   
   
    and    √

 

 
∑ (     )

    
      

Average bending energy    
 

 
∑  ( )    
     

Hole area ratio    
     

      
  

Ellipse variance 
   √  

        

Eccentricity    
  

  
  

Compactness     
      

    
 where      is the area of a bounding box 

Elongation     
    

    
  

3D Centroid     
 

 
∑ (        )
 
     

Surface area           ∑    
 
    

 

 
∑ ‖(       )  (       )‖
 
    where     is the area of the     

triangle with     vertices         

Volume          
 

 
∑    (       )
 
    

 

 
∑ ,       )  (       )-     
 
     

Sphericity  
   

       

        
 
 
 
 (         )

 
 

        
  

Willmore energy   
 

 
∫(     )

     

Convexity    
       

        
  

 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

82 
 

Table 4: The applied shape morphological features in poultry monitoring systems 

Classification  Features  Description  Reference  

Global region-based shape 

descriptions 

Area  Number of pixels within the ROI  Pereira et al. (2013), Zaninelli et al. (2018), Guo et al. 

(2020), Aydin et al. (2015), Aydin (2017b), De Wet et 

al. (2003), Mollah et al. (2010), Mortensen et al. 

(2016), Amraei et al. (2018), Amraei et al. (2017b), 

Amraei et al. (2017a), Neves et al. (2015) 

Minor axis 

length 

Length of the minor axis of a fitted ellipse that has the same normalized second central moments as the 

ROI 

Leroy et al. (2006), Nakarmi et al. (2014), Amraei et al. 

(2018), Amraei et al. (2017b), Amraei et al. (2017a) 

Major axis 

length 

Length of the major axis of a fitted ellipse that has the same normalized second central moments as the 

ROI 

Leroy et al. (2006), Nakarmi et al. (2014), Amraei et al. 

(2018), Amraei et al. (2017b), Amraei et al. (2017a) 

Centroid  Center of mass of the ROI Leroy et al. (2006), Sergeant et al. (1998), Nakarmi et 

al. (2014), Aydin et al. (2015), Aydin (2017b), Nääs et 

al. (2018), Aydin et al. (2013) 

Orientation The angle between the x-axis and the major axis of a fitted ellipse that has the same second-moments 

as the ROI. 

Leroy et al. (2006), Aydin et al. (2015), Aydin (2017b), 

Aydin, (2017a) 

Elongation The ratio of height to width of the ROI’s bounding box  Okinda et al. (2019), Zhuang et al. (2018) 

Area-linear rate The ratio of the area of the ROI to its perimeter Zhuang et al. (2018) 

Structural region-based shape 

descriptions 

Media Axis An image skeleton  Zhuang et al. (2018) 

Radial distance The distance between a point on the boundary and the centroid  Pereira et al. (2013), Mortensen et al. (2016) 

Global contour-based shape 

descriptions 

Perimeter The number of pixels around the boundary of a ROI Pereira et al. (2013), De Wet et al. (2003), Mortensen 

et al. (2016), Amraei et al. (2018), Amraei et al. 

(2017b), Amraei et al. (2017a) 

Eccentricity The ratio of the Eigenvalues (λ1 and λ2) of a covariance matrix of a fitted ellipse over a ROI.  Okinda et al. (2019), Mortensen et al. (2016), Amraei 

et al. (2017b) 

Compactness or 

rectangularity 

The ratio between the size of shape compared to the size of its bounding 

box 

 

Concavity The measure of a shape’s concaveness by how the derivative of its function is changing (curving in) Zhuang et al. (2018) 

Circularity ratio 

(perimeter) 

The ratio between the size of the ROI compared to the area 

of a circle that has the same perimeter with the ROI’s perimeter 

Zhuang et al. (2018) 

Circle variance The ratio between standard deviation and averaged value of the radial distance from all points in the 

ROI’s boundary 

Okinda et al. (2019) 

Convexity The ratio between the perimeter of the convex hull from a ROI compared to its perimeter Okinda et al. (2019) 
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Table 5: The applied locomotor features in poultry monitoring systems 

Kinematic Features  Description  Measurement technique units Reference  

Displacement  The Euclidean distance moved by the bird or part of the body Image analysis (The Euclidean distance moved by the 

broiler's centroid between a pair of consecutive frames) 

m Nääs et al. (2018),  

  Image analysis (change in head’s centroid position) mm Mehdizadeh et al. (2015) 

Stride duration The time taken by the bird to complete one stance (ground contact), 

and one swing (aerial) 

Qualisys Track Manager (QTM) software s Caplen et al. (2012), Caplen et al. (2013) 

Stride or step length The distance moved during the stance and swing phase of a single leg Qualisys Track Manager (QTM) software mm Caplen et al. (2012), Caplen et al. (2013),  

Image analysis (centroid position and body location 

information) 

cm Aydin (2017b) 

Percentage stance Percentage of the stride duration when a foot is in contact with the 

ground 

Qualisys Track Manager (QTM) software % Caplen et al. (2012), Caplen et al. (2013) 

Step frequency  The number of steps to cover a particular distance  Image analysis (centroid position and body location 

information) 

n Aydin (2017b) 

Double-leg support Percentage duration of each stride when both legs are weight-bearing Qualisys Track Manager (QTM) software % Caplen et al. (2012), Caplen et al. (2013) 

Vertical leg 

displacement 

Maximum height leg lifted during a stride Qualisys Track Manager (QTM) software mm Caplen et al. (2012), Caplen et al. (2013) 

Lateral body 

oscillation 

The chicken's body moving from one lateral position to another and 

back to the original position 

Qualisys Track Manager (QTM) software mm Caplen et al. (2012), Caplen et al. (2013) 

 

Image analysis (orientation angle and body location 

information) 

cm2 Aydin (2017b) 

Vertical back 

displacement 

Maximum height back moved in a vertical direction during a stride Qualisys Track Manager (QTM) software mm Caplen et al. (2012), Caplen et al. (2013) 

Speed The distance walked by the bird or moved by a bird’s body part per 

unit time. 

Image analysis (number of acquired images depending on 

the capture frame rate as the bird moves across the walking 

test corridor) 

ms-1 Okinda et al. (2019) 

mms-1 Aydin (2017b) 

Qualisys Track Manager (QTM) software mms-1 Caplen et al. (2012), Caplen et al. (2013) 

Manually measured the path of a bird that walked for over 

10 s using an acetate sheet was placed against the computer 

screen 

 Dawkins et al. (2013) 

Image analysis (rate of change of beak displacement) mm ms-1 Mehdizadeh et al. (2015) 

Velocity  Change in the chicken displacement per unit time  Change in displacement between two consecutive periods, 

divided by the time difference 

ms-1 Nääs et al. (2018) 

Acceleration  The rate of change of a bird’s walking or a bird’s body part velocity Change in the bird’s velocity in a given amount of time ms-2 Nääs et al. (2018) 

Change in the beak’s velocity with respect to time mm ms-2 Mehdizadeh et al. (2015) 
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Table 6: The optical flow measures 

Optical flow measures Description  

Mean   ( )  
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Where   is the number of pixel blocks applied to compute the optical flow 
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Table 7: Summary of the computer vision-based chicken monitoring systems in the literature 

Monitored bio-process and bio-responses  n Statistical Analysis Model Software 

 

Accuracy References 

 Investigation 

Behavior  Behavior in relation to stress 

conditions 

7 ANOVA Linear regression - 0.76 (R2) Marıa et al. (2004) 

Behavior analysis of individually 

caged poultry  

18 - Transfer function (TF) - - Leroy et al. (2006) 

Relation of optical flow patterns 

between behavior, mortality, GS, 

and leg health  

24 Pearson correlation test - - - Dawkins et al. (2012) 

Optical flow patterns in broiler in 

behavior classification and GS 

40000 Correlation analysis - - - Dawkins et al. (2009) 

The relationship between optical 

flow, behavior and 

welfare 

35000 Pearson correlation test - - - Dawkins et al. (2013) 

Effects of different light 

sources and illuminances on 

behavior  

16 Non-parametric analysis of 

variance 

- Statistical Analysis 

Software (SAS) 

- Kristensen et al. (2007) 

Behavior classification  - - Classification tree Weka® version 3.4.11 70.3% Pereira et al. (2013) 

~350 - YOLO v3 Darknet framework 92.09% Wang et al. (2020) 

Feeding behavior (beak and head 

motion during feeding) 

3 ANOVA 

 

Linear regression Minitab 17® 99.2% (R2) Mehdizadeh et al. (2015) 

Tracking and behavior 

classification 

15 Multi-regression  - R statistical package 95% Nakarmi et al. (2014) 

Feeding and drinking behavior 

classification 

60 ANOVA Linear regression Statistical Analysis Software 

(SAS) 

96.5 G. Li et al. (2019) 

Behavior monitoring for early 

detection of Campylobacter 

31 Multi-level models  R statistical package  Colles et al. (2016) 

Behavioral response to feeding 

events 

136 ANOVA  EthoVision XT 10 

SigmaPlot 11 

 Fraess et al. (2016) 

Behavior recognition 3087 - CNN Visual Studio 

OpenCV3.5.0 

Kinect for Windows SDK 

96.4% Pu et al. (2018) 

Effects of wearing a backpack on 

behavior, health, and productivity 

60 Mixed logistic regression - - - Stadig et al. (2018) 

 Effects of micro-environment 

conditions on behavior and 

activity 

45 - Discrete Transfer Function - 94% Youssef et al. (2015) 

 Effects of feeder types on flock 

behavior  

14000 General Linear Model 

(GLM) 

- MATLAB 

Minitab 15 ® 

- Neves et al. (2015) 

 Recognition of behavior 

phenotypes of layers 

5 - Dynamic modeling Observer ® 70-96 % Leroy et al. (2005) 
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Tracking  Tracking of individual birds  13 - - - 95% Sergeant et al. (1998) 

10 - Deep regression Python 0.73 Fang et al. (2020) 

 10  Particle filter - - Fujii et al. (2009) 

Detection of multiple nest 

occupations 

- ANOVA - R statistical package 95.5% Zaninelli et al. (2018) 

Monitoring broiler chicken floor 

distribution 

126 ANOVA BP neural network MATLAB 0.996 (R) Guo et al. (2020) 

 Real-time malfunctioning in a 

broiler house detector 

28000 - Linear regression eYeNamic system 

MxControlCenter 

MATLAB 

95.24 % Kashiha et al. (2013) 

 Evaluation of a laying-hen 

tracking 

6 - Hybrid Support Vector Machine 

(HSVM) 

OpenCV 0.79 Wang et al. (2016) 

 Hen tracking in an environmental 

preference chamber 

4 - Ellipse-fitting model MATLAB 95.9 ± 2.6% Kashiha et al. (2014) 

Health  Monitoring of heat stress   Correlation  Faster R-CNN Caffe - Lin et al. (2018) 

Automatic detection of sick 

chickens 

- - Residual neural network - 95% Zhang and Chen (2020) 

Detection of sick broilers 20 - SVM, 

Bayesian classifier, Random 

Forest and ANN 

Visual Studio 2013 

OpenCV 2.4.13 

 

99.469% Zhuang et al. (2018) 

Early detection and 

prediction of sick chickens 

280 Friedman test, 

Spearman's correlation test, 

Wilcoxon Signed-Rank 

Test 

SVM, 

ANN, and 

logit regression 

Statistical Package for the 

Social Sciences (SPSS) 

Kinect for Windows SDK 

MATLAB 

0.978 Okinda et al. (2019) 

Classification of Broiler 

Droppings for intestinal disease 

detection  

10000 - Faster R-CNN and YOLO-V3 Tensorflow framework  

Darknet framework 

93.3% J. Wang et al. (2019) 

Detection of sick broilers  400000 - Improved Feature Fusion Single 

Shot MultiBox Detector (IFSSD) 

OpenCV 

 

99.7% Zhuang and Zhang (2019) 

 Prediction of welfare outcomes for 

broiler chickens 

816000 - Bayesian multivariate 

linear model 

- - Roberts et al. (2012) 

 Head surface temperature 

extraction 

20 - - MATLAB 92.77% Xiong et al. (2019) 

Activity  Identification of activities of 

chickens with different GS 

30 Friedman test 

Dunn test 

- MATLAB - Aydin et al. (2013) 

Identification of activities of 

chickens with different GS 

30 Friedman test 

Dunn test 

- eYeNamic software - Aydin et al. (2010) 

Predicting broiler GS based on 

activity monitoring and flock data 

196000 ANOVA 

Blande Altman method 

- eYeNamic software 0.53 - 0.74 (R2) Van Hertem et al. (2018) 

 Effects of micro-environment 

conditions on behavior and 

activity 

45 - Discrete Transfer Function - 94% Youssef et al. (2015) 

 Image analysis to measure activity 15 - linear regression Turbo Pascal 0.5 (R2) Bloemen et al. (1997) 
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index of poultry 

 Effects of light intensity on the 

dynamic activity of broiler 

chickens 

84 Spearman correlation 

ANOVA 

Discrete Transfer Function MATLAB, Statistical Analysis 

Software (SAS) 

 Kristensen et al. (2006) 

Lameness   Classification of lying event to 

assess lameness of broilers 

250 Friedman test 

Dunn test 

- MATLAB - Aydin et al. (2015) 

Kinematic analysis regarding GS - ANOVA - MLwiN v2.22 - Caplen et al. (2012) 

The response of lame broilers to 

non-steroidal anti-inflammatory 

drugs 

32 ANOVA - MLwiN v2.22 - Caplen et al. (2013) 

Early detection system for 

lameness in broilers 

250 Friedman test 

Dunn test 

- MATLAB - Aydin (2017b) 

Estimating the GS of broiler 

chickens 

300 - Paraconsistent logic MATLAB 50 – 100 % Nääs et al. (2018) 

Assess the level of 

inactivity in broiler chickens 

250 Friedman test 

Dunn test 

Linear regression Statistical analysis software 

(SAS) 

MATLAB 

94.49% Aydin (2017a) 

 Walking behavior of heavy and 

light broilers 

36 General Linear Model 

(GLM) 

- LabView - Bokkers et al. (2007) 

Weight  Monitoring daily growth rates of 

broiler chickens 

50 - Non-linear regression - 0.94 - 0.97 (R2) De Wet et al. (2003) 

Prediction of broiler chickens 

weight using 3D computer vision 

48000 - Multivariate linear regression 

ANN 

Bayesian ANN 

MATLAB 92.2 % Mortensen et al. (2016) 

Boiler live weight estimation 100 Paired t-test Linear regression IDRISI 32 0.99 (R2) Mollah et al. (2010) 

30 Paired t-test, 

Correlation analysis 

ANN MATLAB 0.98 (R2) Amraei et al. (2017a) 

20 Paired t-test SVR LIBSVM 0.98 (R2) Amraei et al. (2017b) 

30 Correlation analysis  Transform Function MATLAB 0.98 (R2) Amraei et al. (2018) 
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Table 8: Data augmentation techniques adopted from Shorten and Khoshgoftaar (2019) 

Data augmentation techniques Descriptions  

Classification  Method  

Geometric transformations Flipping  Horizontal and vertical mirroring  

 Rotation  Rotating an image by    around the center of the image 

 Cropping  Reducing the size of the input image  

 Translation  Shifting images left, right, up, or down to avoid positional bias in the data 

 Noise injection  Injecting a matrix of random values drawn from a Gaussian distribution 

(gaussian noise) 

 Color  Isolating a single-color channel such as R, G, or B and color histograms 

manipulation (brightness) 

Photometric transformations Color space transformation  Conversion of RGB space to other color spaces i.e., HSV, YUV, CMY and 

LAB. 

Kernel filters Sharpening Sharpen the image edges by use of high contrast vertical or horizontal edge 

filter 

 Blurring  Blurring the image by use of Gaussian blur, average blur, uniform blur, and 

median filters  

Mixing images Mixing images together Producing a new image by averaging the pixel values of images. 

Random erasing Dropout regularization Selects an     patch of an image and mask it with either 0s, 255s, mean 

pixel values, or random values 

Deep learning-based augmentation Feature space  Noise, extrapolating, and interpolating by joining k nearest neighbors to form 

new instances in lower-dimensional representations in high-level layers 

 Adversarial training The use of adversarial attacking in a rival network to learn augmentations 

to images that result in misclassifications in its rival classification network. 

 Generative adversarial 

network (GAN)-based  

Creation of artificial instances from a dataset in a way that they retain similar 

characteristics to the original dataset 

 Neural style transfer Manipulates the sequential representations across a CNN, i.e., that the style of 

an image can be transferred to another while preserving its original content 

 Meta-learning schemes Applies a prepended neural network to learn augmentations via Neural Style 

Transfer, mixing images, and geometric transformations. 

 

  

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

89 
 

Highlights  

Recent advances and developments of poultry monitoring systems based on computer vision 

were reviewed. 

Various poultry welfare-related bio-processes and bio-responses in poultry were presented. 

Recently developed machine learning and deep learning-based approaches in poultry 

monitoring were covered. 

Various challenges and possible solutions in poultry monitoring systems were discussed.  
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